File size: 9,163 Bytes
9dce458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
"""  
Copyright (c) 2019-present NAVER Corp.
MIT License
"""

# -*- coding: utf-8 -*-
import numpy as np
import cv2
import math

""" auxiliary functions """
# unwarp corodinates
def warpCoord(Minv, pt):
    out = np.matmul(Minv, (pt[0], pt[1], 1))
    return np.array([out[0]/out[2], out[1]/out[2]])
""" end of auxiliary functions """


def getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text):
    # prepare data
    linkmap = linkmap.copy()
    textmap = textmap.copy()
    img_h, img_w = textmap.shape

    """ labeling method """
    ret, text_score = cv2.threshold(textmap, low_text, 1, 0)
    ret, link_score = cv2.threshold(linkmap, link_threshold, 1, 0)

    text_score_comb = np.clip(text_score + link_score, 0, 1)
    #cv2.imshow('text_score_comb', text_score_comb)
    nLabels, labels, stats, centroids = cv2.connectedComponentsWithStats(text_score_comb.astype(np.uint8), connectivity=4)

    det = []
    mapper = []
    for k in range(1,nLabels):
        # size filtering
        size = stats[k, cv2.CC_STAT_AREA]
        if size < 10: continue

        # thresholding
        if np.max(textmap[labels==k]) < text_threshold: continue

        # make segmentation map
        segmap = np.zeros(textmap.shape, dtype=np.uint8)
        segmap[labels==k] = 255
        segmap[np.logical_and(link_score==1, text_score==0)] = 0   # remove link area
        x, y = stats[k, cv2.CC_STAT_LEFT], stats[k, cv2.CC_STAT_TOP]
        w, h = stats[k, cv2.CC_STAT_WIDTH], stats[k, cv2.CC_STAT_HEIGHT]
        niter = int(math.sqrt(size * min(w, h) / (w * h)) * 2)
        sx, ex, sy, ey = x - niter, x + w + niter + 1, y - niter, y + h + niter + 1
        # boundary check
        if sx < 0 : sx = 0
        if sy < 0 : sy = 0
        if ex >= img_w: ex = img_w
        if ey >= img_h: ey = img_h
        kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(2 + niter, 2 + niter))
        segmap[sy:ey, sx:ex] = cv2.dilate(segmap[sy:ey, sx:ex], kernel)

        # make box
        np_contours = np.roll(np.array(np.where(segmap!=0)),1,axis=0).transpose().reshape(-1,2)
        rectangle = cv2.minAreaRect(np_contours)
        box = cv2.boxPoints(rectangle)

        # align diamond-shape
        w, h = np.linalg.norm(box[0] - box[1]), np.linalg.norm(box[1] - box[2])
        box_ratio = max(w, h) / (min(w, h) + 1e-5)
        if abs(1 - box_ratio) <= 0.1:
            l, r = min(np_contours[:,0]), max(np_contours[:,0])
            t, b = min(np_contours[:,1]), max(np_contours[:,1])
            box = np.array([[l, t], [r, t], [r, b], [l, b]], dtype=np.float32)

        # make clock-wise order
        startidx = box.sum(axis=1).argmin()
        box = np.roll(box, 4-startidx, 0)
        box = np.array(box)

        det.append(box)
        mapper.append(k)

    return det, labels, mapper

def getPoly_core(boxes, labels, mapper, linkmap):
    # configs
    num_cp = 5
    max_len_ratio = 0.7
    expand_ratio = 1.45
    max_r = 2.0
    step_r = 0.2

    polys = []  
    for k, box in enumerate(boxes):
        # size filter for small instance
        w, h = int(np.linalg.norm(box[0] - box[1]) + 1), int(np.linalg.norm(box[1] - box[2]) + 1)
        if w < 10 or h < 10:
            polys.append(None); continue

        # warp image
        tar = np.float32([[0,0],[w,0],[w,h],[0,h]])
        M = cv2.getPerspectiveTransform(box, tar)
        word_label = cv2.warpPerspective(labels, M, (w, h), flags=cv2.INTER_NEAREST)
        try:
            Minv = np.linalg.inv(M)
        except Exception:
            polys.append(None); continue

        # binarization for selected label
        cur_label = mapper[k]
        word_label[word_label != cur_label] = 0
        word_label[word_label > 0] = 1

        """ Polygon generation """
        # find top/bottom contours
        cp = []
        max_len = -1
        for i in range(w):
            region = np.where(word_label[:,i] != 0)[0]
            if len(region) < 2 : continue
            cp.append((i, region[0], region[-1]))
            length = region[-1] - region[0] + 1
            if length > max_len: max_len = length

        # pass if max_len is similar to h
        if h * max_len_ratio < max_len:
            polys.append(None); continue

        # get pivot points with fixed length
        tot_seg = num_cp * 2 + 1
        seg_w = w / tot_seg     # segment width
        pp = [None] * num_cp    # init pivot points
        cp_section = [[0, 0]] * tot_seg
        seg_height = [0] * num_cp
        seg_num = 0
        num_sec = 0
        prev_h = -1
        for i in range(0,len(cp)):
            (x, sy, ey) = cp[i]
            if (seg_num + 1) * seg_w <= x and seg_num <= tot_seg:
                # average previous segment
                if num_sec == 0: break
                cp_section[seg_num] = [cp_section[seg_num][0] / num_sec, cp_section[seg_num][1] / num_sec]
                num_sec = 0

                # reset variables
                seg_num += 1
                prev_h = -1

            # accumulate center points
            cy = (sy + ey) * 0.5
            cur_h = ey - sy + 1
            cp_section[seg_num] = [cp_section[seg_num][0] + x, cp_section[seg_num][1] + cy]
            num_sec += 1

            if seg_num % 2 == 0: continue # No polygon area

            if prev_h < cur_h:
                pp[int((seg_num - 1)/2)] = (x, cy)
                seg_height[int((seg_num - 1)/2)] = cur_h
                prev_h = cur_h

        # processing last segment
        if num_sec != 0:
            cp_section[-1] = [cp_section[-1][0] / num_sec, cp_section[-1][1] / num_sec]

        # pass if num of pivots is not sufficient or segment widh is smaller than character height 
        if None in pp or seg_w < np.max(seg_height) * 0.25:
            polys.append(None); continue

        # calc median maximum of pivot points
        half_char_h = np.median(seg_height) * expand_ratio / 2

        # calc gradient and apply to make horizontal pivots
        new_pp = []
        for i, (x, cy) in enumerate(pp):
            dx = cp_section[i * 2 + 2][0] - cp_section[i * 2][0]
            dy = cp_section[i * 2 + 2][1] - cp_section[i * 2][1]
            if dx == 0:     # gradient if zero
                new_pp.append([x, cy - half_char_h, x, cy + half_char_h])
                continue
            rad = - math.atan2(dy, dx)
            c, s = half_char_h * math.cos(rad), half_char_h * math.sin(rad)
            new_pp.append([x - s, cy - c, x + s, cy + c])

        # get edge points to cover character heatmaps
        isSppFound, isEppFound = False, False
        grad_s = (pp[1][1] - pp[0][1]) / (pp[1][0] - pp[0][0]) + (pp[2][1] - pp[1][1]) / (pp[2][0] - pp[1][0])
        grad_e = (pp[-2][1] - pp[-1][1]) / (pp[-2][0] - pp[-1][0]) + (pp[-3][1] - pp[-2][1]) / (pp[-3][0] - pp[-2][0])
        for r in np.arange(0.5, max_r, step_r):
            dx = 2 * half_char_h * r
            if not isSppFound:
                line_img = np.zeros(word_label.shape, dtype=np.uint8)
                dy = grad_s * dx
                p = np.array(new_pp[0]) - np.array([dx, dy, dx, dy])
                cv2.line(line_img, (int(p[0]), int(p[1])), (int(p[2]), int(p[3])), 1, thickness=1)
                if np.sum(np.logical_and(word_label, line_img)) == 0 or r + 2 * step_r >= max_r:
                    spp = p
                    isSppFound = True
            if not isEppFound:
                line_img = np.zeros(word_label.shape, dtype=np.uint8)
                dy = grad_e * dx
                p = np.array(new_pp[-1]) + np.array([dx, dy, dx, dy])
                cv2.line(line_img, (int(p[0]), int(p[1])), (int(p[2]), int(p[3])), 1, thickness=1)
                if np.sum(np.logical_and(word_label, line_img)) == 0 or r + 2 * step_r >= max_r:
                    epp = p
                    isEppFound = True
            if isSppFound and isEppFound:
                break

        # pass if boundary of polygon is not found
        if not (isSppFound and isEppFound):
            polys.append(None); continue

        # make final polygon
        poly = []
        poly.append(warpCoord(Minv, (spp[0], spp[1])))
        for p in new_pp:
            poly.append(warpCoord(Minv, (p[0], p[1])))
        poly.append(warpCoord(Minv, (epp[0], epp[1])))
        poly.append(warpCoord(Minv, (epp[2], epp[3])))
        for p in reversed(new_pp):
            poly.append(warpCoord(Minv, (p[2], p[3])))
        poly.append(warpCoord(Minv, (spp[2], spp[3])))

        # add to final result
        polys.append(np.array(poly))

    return polys

def getDetBoxes(textmap, linkmap, text_threshold, link_threshold, low_text, poly=False):
    boxes, labels, mapper = getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text)

    if poly:
        polys = getPoly_core(boxes, labels, mapper, linkmap)
    else:
        polys = [None] * len(boxes)

    return boxes, polys

def adjustResultCoordinates(polys, ratio_w, ratio_h, ratio_net = 2):
    if len(polys) > 0:
        polys = np.array(polys)
        for k in range(len(polys)):
            if polys[k] is not None:
                polys[k] *= (ratio_w * ratio_net, ratio_h * ratio_net)
    return polys