File size: 11,003 Bytes
9dce458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
from typing import List, Optional
import numpy as np
import os
import shutil
import torch
import torch.nn as nn
import torch.nn.functional as F

from .inpainting_lama_mpe import LamaMPEInpainter

class AotInpainter(LamaMPEInpainter):
    _MODEL_MAPPING = {
        'model': {
            'url': 'https://github.com/zyddnys/manga-image-translator/releases/download/beta-0.3/inpainting.ckpt',
            'hash': '878d541c68648969bc1b042a6e997f3a58e49b6c07c5636ad55130736977149f',
            'file': '.',
        },
    }

    def __init__(self, *args, **kwargs):
        os.makedirs(self.model_dir, exist_ok=True)
        if os.path.exists('inpainting.ckpt'):
            shutil.move('inpainting.ckpt', self._get_file_path('inpainting.ckpt'))
        super().__init__(*args, **kwargs)

    async def _load(self, device: str):
        self.model = AOTGenerator()
        sd = torch.load(self._get_file_path('inpainting.ckpt'), map_location='cpu')
        self.model.load_state_dict(sd['model'] if 'model' in sd else sd)
        self.model.eval()
        self.device = device
        if device.startswith('cuda') or device == 'mps':
            self.model.to(device)


def relu_nf(x):
    return F.relu(x) * 1.7139588594436646

def gelu_nf(x):
    return F.gelu(x) * 1.7015043497085571

def silu_nf(x):
    return F.silu(x) * 1.7881293296813965

class LambdaLayer(nn.Module):
    def __init__(self, f):
        super(LambdaLayer, self).__init__()
        self.f = f

    def forward(self, x):
        return self.f(x)

class ScaledWSConv2d(nn.Conv2d):
    """2D Conv layer with Scaled Weight Standardization."""
    def __init__(self, in_channels, out_channels, kernel_size,

        stride=1, padding=0,

        dilation=1, groups=1, bias=True, gain=True,

        eps=1e-4):
        nn.Conv2d.__init__(self, in_channels, out_channels,
            kernel_size, stride,
            padding, dilation,
            groups, bias)
        #nn.init.kaiming_normal_(self.weight)
        if gain:
            self.gain = nn.Parameter(torch.ones(self.out_channels, 1, 1, 1))
        else:
            self.gain = None
        # Epsilon, a small constant to avoid dividing by zero.
        self.eps = eps
    def get_weight(self):
        # Get Scaled WS weight OIHW;
        fan_in = np.prod(self.weight.shape[1:])
        var, mean = torch.var_mean(self.weight, dim=(1, 2, 3), keepdims=True)
        scale = torch.rsqrt(torch.max(
            var * fan_in, torch.tensor(self.eps).to(var.device))) * self.gain.view_as(var).to(var.device)
        shift = mean * scale
        return self.weight * scale - shift

    def forward(self, x):
        return F.conv2d(x, self.get_weight(), self.bias,
            self.stride, self.padding,
            self.dilation, self.groups)

class ScaledWSTransposeConv2d(nn.ConvTranspose2d):
    """2D Transpose Conv layer with Scaled Weight Standardization."""
    def __init__(self, in_channels: int,

        out_channels: int,

        kernel_size,

        stride = 1,

        padding = 0,

        output_padding = 0,

        groups: int = 1,

        bias: bool = True,

        dilation: int = 1,

        gain=True,

        eps=1e-4):
        nn.ConvTranspose2d.__init__(self, in_channels, out_channels, kernel_size, stride, padding, output_padding, groups, bias, dilation, 'zeros')
        #nn.init.kaiming_normal_(self.weight)
        if gain:
            self.gain = nn.Parameter(torch.ones(self.in_channels, 1, 1, 1))
        else:
            self.gain = None
        # Epsilon, a small constant to avoid dividing by zero.
        self.eps = eps
    def get_weight(self):
        # Get Scaled WS weight OIHW;
        fan_in = np.prod(self.weight.shape[1:])
        var, mean = torch.var_mean(self.weight, dim=(1, 2, 3), keepdims=True)
        scale = torch.rsqrt(torch.max(
            var * fan_in, torch.tensor(self.eps).to(var.device))) * self.gain.view_as(var).to(var.device)
        shift = mean * scale
        return self.weight * scale - shift

    def forward(self, x, output_size: Optional[List[int]] = None):
        output_padding = self._output_padding(
            input, output_size, self.stride, self.padding, self.kernel_size, self.dilation)
        return F.conv_transpose2d(x, self.get_weight(), self.bias, self.stride, self.padding,
            output_padding, self.groups, self.dilation)

class GatedWSConvPadded(nn.Module):
    def __init__(self, in_ch, out_ch, ks, stride = 1, dilation = 1):
        super(GatedWSConvPadded, self).__init__()
        self.in_ch = in_ch
        self.out_ch = out_ch
        self.padding = nn.ReflectionPad2d(((ks - 1) * dilation) // 2)
        self.conv = ScaledWSConv2d(in_ch, out_ch, kernel_size = ks, stride = stride, dilation = dilation)
        self.conv_gate = ScaledWSConv2d(in_ch, out_ch, kernel_size = ks, stride = stride, dilation = dilation)

    def forward(self, x):
        x = self.padding(x)
        signal = self.conv(x)
        gate = torch.sigmoid(self.conv_gate(x))
        return signal * gate * 1.8

class GatedWSTransposeConvPadded(nn.Module):
    def __init__(self, in_ch, out_ch, ks, stride = 1):
        super(GatedWSTransposeConvPadded, self).__init__()
        self.in_ch = in_ch
        self.out_ch = out_ch
        self.conv = ScaledWSTransposeConv2d(in_ch, out_ch, kernel_size = ks, stride = stride, padding = (ks - 1) // 2)
        self.conv_gate = ScaledWSTransposeConv2d(in_ch, out_ch, kernel_size = ks, stride = stride, padding = (ks - 1) // 2)

    def forward(self, x):
        signal = self.conv(x)
        gate = torch.sigmoid(self.conv_gate(x))
        return signal * gate * 1.8

class ResBlock(nn.Module):
    def __init__(self, ch, alpha = 0.2, beta = 1.0, dilation = 1):
        super(ResBlock, self).__init__()
        self.alpha = alpha
        self.beta = beta
        self.c1 = GatedWSConvPadded(ch, ch, 3, dilation = dilation)
        self.c2 = GatedWSConvPadded(ch, ch, 3, dilation = dilation)

    def forward(self, x):
        skip = x
        x = self.c1(relu_nf(x / self.beta))
        x = self.c2(relu_nf(x))
        x = x * self.alpha
        return x + skip

def my_layer_norm(feat):
    mean = feat.mean((2, 3), keepdim=True)
    std = feat.std((2, 3), keepdim=True) + 1e-9
    feat = 2 * (feat - mean) / std - 1
    feat = 5 * feat
    return feat

class AOTBlock(nn.Module):
    def __init__(self, dim, rates = [2, 4, 8, 16]):
        super(AOTBlock, self).__init__()
        self.rates = rates
        for i, rate in enumerate(rates):
            self.__setattr__(
                'block{}'.format(str(i).zfill(2)), 
                nn.Sequential(
                    nn.ReflectionPad2d(rate),
                    nn.Conv2d(dim, dim//4, 3, padding=0, dilation=rate),
                    nn.ReLU(True)))
        self.fuse = nn.Sequential(
            nn.ReflectionPad2d(1),
            nn.Conv2d(dim, dim, 3, padding=0, dilation=1))
        self.gate = nn.Sequential(
            nn.ReflectionPad2d(1),
            nn.Conv2d(dim, dim, 3, padding=0, dilation=1))

    def forward(self, x):
        out = [self.__getattr__(f'block{str(i).zfill(2)}')(x) for i in range(len(self.rates))]
        out = torch.cat(out, 1)
        out = self.fuse(out)
        mask = my_layer_norm(self.gate(x))
        mask = torch.sigmoid(mask)
        return x * (1 - mask) + out * mask

class ResBlockDis(nn.Module):
    def __init__(self, in_planes, planes, stride=1):
        super(ResBlockDis, self).__init__()
        self.bn1 = nn.InstanceNorm2d(in_planes)
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3 if stride == 1 else 4, stride=stride, padding=1)
        self.bn2 = nn.InstanceNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1)
        self.planes = planes
        self.in_planes = in_planes
        self.stride = stride

        self.shortcut = nn.Sequential()
        if stride > 1:
            self.shortcut = nn.Sequential(nn.AvgPool2d(2, 2), nn.Conv2d(in_planes, planes, kernel_size=1))
        elif in_planes != planes and stride == 1:
            self.shortcut = nn.Sequential(nn.Conv2d(in_planes, planes, kernel_size=1))

    def forward(self, x):
        sc = self.shortcut(x)
        x = self.conv1(F.leaky_relu(self.bn1(x), 0.2))
        x = self.conv2(F.leaky_relu(self.bn2(x), 0.2))
        return sc + x
from torch.nn.utils import spectral_norm
class Discriminator(nn.Module):
    def __init__(self, in_ch = 3, in_planes = 64, blocks = [2, 2, 2], alpha = 0.2):
        super(Discriminator, self).__init__()
        self.in_planes = in_planes

        self.conv = nn.Sequential(
            spectral_norm(nn.Conv2d(in_ch, in_planes, 4, stride=2, padding=1, bias=False)),
            nn.LeakyReLU(0.2, inplace=True),
            spectral_norm(nn.Conv2d(in_planes, in_planes*2, 4, stride=2, padding=1, bias=False)),
            nn.LeakyReLU(0.2, inplace=True),
            spectral_norm(nn.Conv2d(in_planes*2, in_planes*4, 4, stride=2, padding=1, bias=False)),
            nn.LeakyReLU(0.2, inplace=True),
            spectral_norm(nn.Conv2d(in_planes*4, in_planes*8, 4, stride=1, padding=1, bias=False)),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(512, 1, 4, stride=1, padding=1)
        )

    def forward(self, x):
        x = self.conv(x)
        return x

class AOTGenerator(nn.Module):
    def __init__(self, in_ch = 4, out_ch = 3, ch = 32, alpha = 0.0):
        super(AOTGenerator, self).__init__()

        self.head = nn.Sequential(
            GatedWSConvPadded(in_ch, ch, 3, stride = 1),
            LambdaLayer(relu_nf),
            GatedWSConvPadded(ch, ch * 2, 4, stride = 2),
            LambdaLayer(relu_nf),
            GatedWSConvPadded(ch * 2, ch * 4, 4, stride = 2),
        )

        self.body_conv = nn.Sequential(*[AOTBlock(ch * 4) for _ in range(10)])

        self.tail = nn.Sequential(
            GatedWSConvPadded(ch * 4, ch * 4, 3, 1),
            LambdaLayer(relu_nf),
            GatedWSConvPadded(ch * 4, ch * 4, 3, 1),
            LambdaLayer(relu_nf),
            GatedWSTransposeConvPadded(ch * 4, ch * 2, 4, 2),
            LambdaLayer(relu_nf),
            GatedWSTransposeConvPadded(ch * 2, ch, 4, 2),
            LambdaLayer(relu_nf),
            GatedWSConvPadded(ch, out_ch, 3, stride = 1),
        )

    def forward(self, img, mask):
        x = torch.cat([mask, img], dim = 1)
        x = self.head(x)
        conv = self.body_conv(x)
        x = self.tail(conv)
        if self.training:
            return x
        else:
            return torch.clip(x, -1, 1)

def test():
    img = torch.randn(4, 3, 256, 256).cuda()
    mask = torch.randn(4, 1, 256, 256).cuda()
    net = AOTGenerator().cuda()
    y1 = net(img, mask)
    print(y1.shape)