File size: 28,103 Bytes
9dce458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
// Copyright (c) 2018 MathInf GmbH, Thomas Viehmann
// Modified by zyddnys
// Licensed under the BSD-3-Clause license
// This is the CPU implementation of the Connectionist Temporal Loss.
// We mostly follow Graves.
// 1. Graves et al: http://www.cs.toronto.edu/~graves/icml_2006.pdf
// Note from zyddnys:
// Added regression capability to CTC loss, currently we use L2 regression, future L1 regression maybe added
// Two BLANKS where BLANK is the BLANK in CTC, BLANK_1 means regression part of this target is ignored
// We use the equations from above link, but note that [1] has 1-based indexing and we (of course) use 0-based.
// Graves et al call the probabilities y, we use log_probs (also calling them inputs)
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/TensorUtils.h>
#include <ATen/native/Fill.h>
#include <numeric>
#include <type_traits>
// Functions that fill Tensors with constants.
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cpu/Loops.h>
#include <ATen/native/Fill.h>
namespace at { namespace native {
template <typename scalar_t>
void fill_non_native_type(TensorIterator& iter, const Scalar& value_scalar) {
auto value = value_scalar.to<scalar_t>().x;
using H = typename std::make_signed<decltype(value)>::type; // Signed type has more acceleration
// Reserve the representation of value. static_cast<H>(value) is implementation defined.
H val = *reinterpret_cast<H*>(std::addressof(value));
cpu_kernel_vec</*check_dynamic_cast=*/false>(
iter,
[val]() -> H { return val; },
[val]() { return Vectorized<H>(val); });
}
template <>
void fill_non_native_type<c10::complex<at::Half>>(TensorIterator& iter, const Scalar& value_scalar) {
static_assert(sizeof(c10::complex<at::Half>) == sizeof(int32_t), "Size of ComplexHalf should be 32-bits");
auto value = c10::complex<at::Half>(value_scalar.to<c10::complex<float>>());
auto val = *reinterpret_cast<int32_t*>(std::addressof(value));
cpu_kernel_vec</*check_dynamic_cast=*/false>(
iter,
[val]() -> int32_t { return val; },
[val]() { return Vectorized<int32_t>(val); });
}
void fill_kernel(TensorIterator& iter, const Scalar& value_scalar) {
if (iter.dtype() == ScalarType::Half) {
fill_non_native_type<at::Half>(iter, value_scalar);
} else if (iter.dtype() == ScalarType::BFloat16) {
fill_non_native_type<at::BFloat16>(iter, value_scalar);
} else if (iter.dtype() == ScalarType::ComplexHalf) {
fill_non_native_type<c10::complex<at::Half>>(iter, value_scalar);
} else {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND(at::ScalarType::Bool, iter.dtype(), "fill_cpu", [&]() {
scalar_t value = value_scalar.to<scalar_t>();
cpu_kernel_vec(
iter,
[=]() -> scalar_t { return value; },
[=]() { return Vectorized<scalar_t>(value); });
});
}
}
} // namespace native
} // namespace at
using namespace c10;
using namespace at;
using namespace at::native;
// this ad-hoc converts from targets (l in [1]) to augmented targets (l' in [1]) note that no bound-checking is done
template<typename target_t>
static inline int64_t get_target_prime(target_t* target, int64_t offset, int64_t stride, int64_t idx, int64_t BLANK) noexcept {
if (idx % 2 == 0) {
return BLANK;
} else {
return target[offset + stride * (idx / 2)];
}
}
// log P(x|mu)
template<typename scalar_t>
scalar_t custom_distance_forward_log(scalar_t x, scalar_t mu, scalar_t sigma) noexcept {
return -0.5 * std::log(2.0 * c10::pi<scalar_t>) - std::log(sigma) - 0.5 * (x - mu) * (x - mu) / (sigma * sigma);
}
// d(P(x|mu))/dmu
template<typename scalar_t>
scalar_t custom_distance_backward(scalar_t x, scalar_t mu, scalar_t sigma) noexcept {
scalar_t val = 1.0 / (sigma * std::sqrt(2 * c10::pi<scalar_t>)) * std::exp(-0.5 * (x - mu) * (x - mu) / (sigma * sigma));
return val * (x - mu) / (sigma * sigma);
}
// log P(x|mu)
template<typename scalar_t>
scalar_t custom_distance_forward_log_l1(scalar_t x, scalar_t mu, scalar_t sigma) noexcept {
return - std::log(2 * sigma) - std::abs(x - mu) / sigma;
}
template<typename scalar_t>
scalar_t sgn(scalar_t v) noexcept {
if (std::abs(v) < std::numeric_limits<scalar_t>::epsilon())
return 0;
return v / std::abs(v);
}
// d(P(x|mu))/dmu
template<typename scalar_t>
scalar_t custom_distance_backward_l1(scalar_t x, scalar_t mu, scalar_t sigma) noexcept {
return -sgn(mu - x) * std::exp(-std::abs(x - mu) / sigma) / (2 * sigma * sigma);
}
#if 0
// d(log P(x|mu))/dmu
template<typename scalar_t>
scalar_t custom_distance_backward_log(scalar_t x, scalar_t mu) {
return x - mu;
}
// P(x|mu)
template<typename scalar_t>
scalar_t custom_distance_forward(scalar_t x, scalar_t mu) {
return 0;
}
#endif
// This kernel is a relatively straightforward implementation of the alpha calculation in the forward backward algorithm (section 4.1).
// A (minor) twist is that we are using log-calculations to enhance numerical stability (log_probs and log_alpha).
// The function returns the loss and the alphas, the alphas are kept for the backward step. The wrapper (ctc_loss below) hides
// the alphas from the user by only returning the loss.
template<typename scalar_t, ScalarType target_scalar_type>
std::tuple<Tensor, Tensor> custom_ctc_loss_cpu_template(
const Tensor& log_probs,
const Tensor& targets,
const Tensor& realval,
const Tensor& targets_realval,
IntArrayRef input_lengths,
IntArrayRef target_lengths,
scalar_t const sigma,
int64_t BLANK,
int64_t BLANK_1
) {
// log_probs: batch_size x input_len x num_labels
// targets [int64]: batch_size x target_length OR sum(target_lengths)
// realval [float]: batch_size x input_len x num_realval
// targets_realval [float]: batch_size x max_target_length x num_realval
constexpr scalar_t neginf = -std::numeric_limits<scalar_t>::infinity();
using target_t = typename std::conditional<target_scalar_type == kInt, int, int64_t>::type;
CheckedFrom c = "ctc_loss_cpu";
auto log_probs_arg = TensorArg(log_probs, "log_probs", 1);
auto targets_arg = TensorArg(targets, "targets", 2);
auto realval_arg = TensorArg(realval, "realval", 3);
auto targets_realval_arg = TensorArg(targets_realval, "targets_realval", 4);
checkScalarType(c, targets_arg, target_scalar_type);
checkDim(c, log_probs_arg, 3);
checkDimRange(c, targets_arg, 1, 3);
int64_t batch_size = log_probs.size(0);
int64_t num_labels = log_probs.size(2);
int64_t num_realval = realval.size(2);
TORCH_CHECK((0 <= BLANK) && (BLANK < num_labels), "blank must be in label range");
TORCH_CHECK((int64_t) input_lengths.size() == batch_size, "input_lengths must be of size batch_size");
TORCH_CHECK((int64_t) target_lengths.size() == batch_size, "target_lengths must be of size batch_size");
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t tg_target_stride;
int64_t max_target_length = 0;
std::vector<int64_t> tg_batch_offsets(batch_size);
if (targets.dim() == 1) { // concatenated targets
int64_t pos = 0;
for (int64_t i = 0; i < batch_size; i++) {
tg_batch_offsets[i] = pos;
pos += target_lengths[i];
if (max_target_length < target_lengths[i])
max_target_length = target_lengths[i];
}
tg_target_stride = targets.stride(0);
checkSize(c, targets_arg, 0, pos);
}
else { // batch x max_target_length
// dim is 2
int64_t tg_batch_stride = targets.stride(0);
for (int64_t i = 0; i < batch_size; i++) {
tg_batch_offsets[i] = i * tg_batch_stride;
if (max_target_length < target_lengths[i])
max_target_length = target_lengths[i];
}
tg_target_stride = targets.stride(1);
checkSize(c, targets_arg, 0, batch_size);
TORCH_CHECK(targets.size(1) >= max_target_length,
"Expected tensor to have size at least ", max_target_length, " at dimension 1, but got size ", targets.size(1), " for ", targets_arg,
" (while checking arguments for ", c, ")");
}
int64_t max_input_length = log_probs.size(1);
for (int64_t b = 0; b < batch_size; b++) {
TORCH_CHECK(input_lengths[b] <= max_input_length,
"Expected input_lengths to have value at most ", max_input_length, ", but got value ", input_lengths[b],
" (while checking arguments for ", c, ")");
}
Tensor log_alpha = at::empty({batch_size, max_input_length, 2*max_target_length+1}, log_probs.options());
Tensor neg_log_likelihood = at::empty({batch_size}, log_probs.options());
auto log_probs_a_global = log_probs.accessor<scalar_t, 3>();
auto log_alpha_a_global = log_alpha.accessor<scalar_t, 3>();
auto targets_data = targets.data_ptr<target_t>();
auto neg_log_likelihood_a = neg_log_likelihood.accessor<scalar_t, 1>();
auto realval_data_a_global = realval.accessor<scalar_t, 3>();
auto targets_realval_data_a_global = targets_realval.accessor<scalar_t, 3>();
// alpha calculation for the first row, the three equations for alpha_1 above eq (6)
// first the default
log_alpha.narrow(1, 0, 1).fill_(neginf);
at::parallel_for(0, batch_size, 0, [&](int64_t start, int64_t end) {
for (int64_t b = start; b < end; b++) {
int64_t input_length = input_lengths[b];
int64_t target_length = target_lengths[b];
auto log_probs_a = log_probs_a_global[b];
auto log_alpha_a = log_alpha_a_global[b];
int64_t tg_batch_offset = tg_batch_offsets[b];
auto realval_data_a = realval_data_a_global[b];
auto targets_realval_data_a = targets_realval_data_a_global[b];
// the first two items of alpha_t above eq (6)
log_alpha_a[0][0] = log_probs_a[0][BLANK];
if (target_length > 0)
{
auto tgt = get_target_prime(targets_data, tg_batch_offset, tg_target_stride, 1, BLANK);
scalar_t cur_logprob = log_probs_a[0][tgt];
if (tgt != BLANK && tgt != BLANK_1)
{
for (int64_t i = 0; i < num_realval; ++i) {
cur_logprob += custom_distance_forward_log(targets_realval_data_a[0][i], realval_data_a[0][i], sigma);
}
}
log_alpha_a[0][1] = cur_logprob;
}
// now the loop over the inputs
for (int64_t t=1; t<input_length; t++) {
for (int64_t s=0; s<2*target_length+1; s++) {
auto current_target_prime = get_target_prime(targets_data, tg_batch_offset, tg_target_stride, s, BLANK);
scalar_t cur_logprob = log_probs_a[t][current_target_prime];
if (current_target_prime != BLANK && current_target_prime != BLANK_1) {
for (int64_t i = 0; i < num_realval; ++i) {
cur_logprob += custom_distance_forward_log(targets_realval_data_a[s / 2][i], realval_data_a[t][i], sigma);
}
}
// this loop over s could be parallel/vectorized, too, but the required items are one index apart
// alternatively, one might consider moving s to the outer loop to cache current_target_prime more (but then it needs to be descending)
// for the cuda implementation, that gave a speed boost.
// This is eq (6) and (7), la1,2,3 are the three summands. We keep track of the maximum for the logsumexp calculation.
scalar_t la1 = log_alpha_a[t-1][s];
scalar_t lamax = la1;
scalar_t la2, la3;
if (s > 0) {
la2 = log_alpha_a[t-1][s-1];
if (la2 > lamax)
lamax = la2;
} else {
la2 = neginf;
}
if ((s > 1) && (get_target_prime(targets_data, tg_batch_offset, tg_target_stride, s-2, BLANK) !=
current_target_prime)) {
la3 = log_alpha_a[t-1][s-2];
if (la3 > lamax)
lamax = la3;
} else {
la3 = neginf;
}
if (lamax == neginf) // cannot do neginf-neginf
lamax = 0;
// this is the assignment of eq (6)
log_alpha_a[t][s] = std::log(std::exp(la1-lamax)+std::exp(la2-lamax)+std::exp(la3-lamax))+lamax + cur_logprob;
}
}
// the likelihood is the the sum of the last two alphas, eq (8), the loss is the negative log likelihood
if (target_length == 0) {
// if the target is empty then there is no preceding BLANK state and hence there is no path to merge
neg_log_likelihood_a[b] = -log_alpha_a[input_length-1][0];
} else {
scalar_t l1 = log_alpha_a[input_length-1][target_length*2];
scalar_t l2 = log_alpha_a[input_length-1][target_length*2-1];
scalar_t m = std::max(l1, l2);
m = ((m == neginf) ? 0 : m);
scalar_t log_likelihood = std::log(std::exp(l1-m)+std::exp(l2-m))+m;
neg_log_likelihood_a[b] = -log_likelihood;
}
}
});
return std::make_tuple(neg_log_likelihood, log_alpha);
}
// This is the backward. It consists of two phases:
// a) computing the beta analogous to the alphas in the forward (backward half of the forward-backward algorithm) (eq (10) and (11))
// b) collecting the per-activation characters for all s and wrapping the gradient (eq (16), the collection is the sum)
template<typename scalar_t, ScalarType target_scalar_type>
std::tuple<Tensor, Tensor> custom_ctc_loss_backward_cpu_template(
const Tensor& grad_out,
const Tensor& log_probs,
const Tensor& targets,
const Tensor& realval,
const Tensor& targets_realval,
IntArrayRef input_lengths,
IntArrayRef target_lengths,
const Tensor& neg_log_likelihood,
const Tensor& log_alpha,
scalar_t const sigma,
int64_t BLANK,
int64_t BLANK_1,
bool zero_infinity
) {
constexpr scalar_t neginf = -std::numeric_limits<scalar_t>::infinity();
using target_t = typename std::conditional<target_scalar_type == kInt, int, int64_t>::type;
TORCH_CHECK(log_probs.size(1) == realval.size(1),
"Expected tensor of log_probs and realval to have the same size at dimension 1, but got size ", log_probs.size(1), " for log_probs and ", realval.size(1),
" for realval");
int64_t max_input_length = log_probs.size(1);
int64_t batch_size = log_probs.size(0);
int64_t num_labels = log_probs.size(2);
int64_t num_realval = realval.size(2);
Tensor grad = at::full_like(log_probs, neginf, LEGACY_CONTIGUOUS_MEMORY_FORMAT); // at this point, this is log of empty sum
Tensor grad_realval = at::full_like(realval, 0, LEGACY_CONTIGUOUS_MEMORY_FORMAT); // at this point, this is empty sum
// The admin bits. We don't do much checking and assume that the forward did.
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int64_t tg_target_stride;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int64_t max_target_length;
std::vector<int64_t> tg_batch_offsets(batch_size);
if (targets.dim() == 1) { // concatenated targets
int64_t pos = 0;
max_target_length = 0;
for (int64_t i = 0; i < batch_size; i++) {
tg_batch_offsets[i] = pos;
pos += target_lengths[i];
if (max_target_length < target_lengths[i])
max_target_length = target_lengths[i];
}
tg_target_stride = targets.stride(0);
}
else { // batch x max_target_length
// dim is 2
int64_t tg_batch_stride = targets.stride(0);
for (int64_t i = 0; i < batch_size; i++) {
tg_batch_offsets[i] = i * tg_batch_stride;
}
tg_target_stride = targets.stride(1);
max_target_length = targets.size(1);
}
Tensor log_beta = at::empty_like(log_alpha, LEGACY_CONTIGUOUS_MEMORY_FORMAT); // could be optimized to use only 2 rows
auto log_probs_a_global = log_probs.accessor<scalar_t, 3>();
auto log_alpha_a_global = log_alpha.accessor<scalar_t, 3>();
auto log_beta_a_global = log_beta.accessor<scalar_t, 3>();
auto grad_a_global = grad.accessor<scalar_t, 3>();
auto grad_realval_a_global = grad_realval.accessor<scalar_t, 3>();
auto targets_data = targets.data_ptr<target_t>();
auto realval_a_global = realval.accessor<scalar_t, 3>();
auto targets_realval_a_global = targets_realval.accessor<scalar_t, 3>();
auto create_fill_iterator = [](const Tensor& tensor, IntArrayRef squash_dims) {
return TensorIteratorConfig()
.set_check_mem_overlap(false) // Fill is idempotent, so overlap is okay
.check_all_same_dtype(false)
.add_output(tensor)
.resize_outputs(false)
.declare_static_shape(tensor.sizes(), squash_dims)
.build();
};
const auto fill_iter = create_fill_iterator(grad, /*squash_dims=*/1);
const auto fill_1d_iter = create_fill_iterator(grad, /*squash_dims=*/{0, 1});
const auto fill_log_beta_1d_iter = create_fill_iterator(log_beta, /*squash_dims=*/{0, 1});
std::vector<scalar_t> grad_realval_acc(num_realval);
at::parallel_for(0, batch_size, 0, [&](int64_t start, int64_t end) {
TensorIterator fill_iter_local(fill_iter);
TensorIterator fill_1d_iter_local(fill_1d_iter);
TensorIterator fill_log_beta_1d_iter_local(fill_log_beta_1d_iter);
for (int64_t b = start; b < end; b++) {
scalar_t gr = grad_out.accessor<scalar_t, 1>()[b];
scalar_t nll = neg_log_likelihood.accessor<scalar_t, 1>()[b];
auto grad_a = grad_a_global[b];
auto grad_realval_a = grad_realval_a_global[b];
if (zero_infinity && nll == std::numeric_limits<scalar_t>::infinity()) {
// grad_batch.zero_();
fill_iter_local.unsafe_replace_operand(0, grad_a.data());
fill_kernel(fill_iter_local, 0);
continue;
}
auto log_probs_a = log_probs_a_global[b];
auto log_alpha_a = log_alpha_a_global[b];
auto log_beta_a = log_beta_a_global[b];
auto realval_data_a = realval_a_global[b];
auto targets_realval_data_a = targets_realval_a_global[b];
int64_t input_length = input_lengths[b];
int64_t target_length = target_lengths[b];
int64_t tg_batch_offset = tg_batch_offsets[b];
// the initialization of beta before eq (10)
// here we do the fill for each batch item separately, as the input lengths will differ, so the t in which
// we start varies
if (input_length > 0) {
// log_beta.select(0, b).select(1, input_length-1).fill_(neginf);
fill_log_beta_1d_iter_local.unsafe_replace_operand(
0, log_beta_a[input_length - 1].data());
fill_kernel(fill_log_beta_1d_iter_local, neginf);
log_beta_a[input_length-1][2*target_length] = log_probs_a[input_length-1][BLANK];
grad_a[input_length-1][BLANK] = log_alpha_a[input_length-1][2*target_length] + log_beta_a[input_length-1][2*target_length];
if (target_length > 0) {
auto current_target_prime = get_target_prime(targets_data, tg_batch_offset, tg_target_stride, 2*target_length-1, BLANK);
scalar_t cur_logprob = log_probs_a[input_length-1][current_target_prime];
if (current_target_prime != BLANK && current_target_prime != BLANK_1) {
for (int64_t i = 0; i != num_realval; ++i) {
cur_logprob += custom_distance_forward_log(targets_realval_data_a[target_length-1][i], realval_data_a[input_length-1][i], sigma);
}
}
log_beta_a[input_length-1][2*target_length-1] = cur_logprob;
// the first two are a blank and a non-blank, so we know they are different and we don't need to do log+
grad_a[input_length-1][current_target_prime] = log_alpha_a[input_length-1][2*target_length-1] + log_beta_a[input_length-1][2*target_length-1];
if (current_target_prime != BLANK && current_target_prime != BLANK_1) {
scalar_t log_prod_n = 0;
for (int64_t i = 0; i != num_realval; ++i) {
log_prod_n += custom_distance_forward_log(targets_realval_data_a[target_length-1][i], realval_data_a[input_length-1][i], sigma);
}
grad_a[input_length-1][current_target_prime] -= log_prod_n;
scalar_t log_term1 = log_alpha_a[input_length-1][2*target_length-1] + log_beta_a[input_length-1][2*target_length-1] - log_probs_a[input_length-1][current_target_prime] - 2 * log_prod_n;
for (int64_t i = 0; i != num_realval; ++i) {
scalar_t log_constant_factors = log_prod_n - custom_distance_forward_log(targets_realval_data_a[target_length-1][i], realval_data_a[input_length-1][i], sigma);
scalar_t grad_dp_dmu = std::exp(log_term1 + log_constant_factors + nll) * custom_distance_backward(targets_realval_data_a[target_length-1][i], realval_data_a[input_length-1][i], sigma);
grad_realval_a[input_length-1][i] = -grad_dp_dmu * gr;
}
}
}
}
// now loop applying eq (10) / (11)
for (int64_t t=input_length-2; t>=0; t--) {
// this loop over s could be parallel/vectorized and doesn't really need to be descending...
// alternatively, one might consider moving s to the outer loop to cache current_target_prime more (but then it needs to be descending)
// for the cuda implementation, that gave a speed boost.
for (int64_t i = 0; i != num_realval; ++i)
grad_realval_acc[i] = 0;
for (int64_t s=2*target_length; s>=0; s--) {
scalar_t lb1 = log_beta_a[t+1][s];
scalar_t lbmax = lb1;
scalar_t lb2, lb3;
auto current_target_prime = get_target_prime(targets_data, tg_batch_offset, tg_target_stride, s, BLANK);
scalar_t cur_logprob = log_probs_a[t][current_target_prime];
if (current_target_prime != BLANK && current_target_prime != BLANK_1) {
for (int64_t i = 0; i < num_realval; ++i) {
cur_logprob += custom_distance_forward_log(targets_realval_data_a[s / 2][i], realval_data_a[t][i], sigma);
}
}
if (s < 2*target_length) {
lb2 = log_beta_a[t+1][s+1];
if (lb2 > lbmax)
lbmax = lb2;
} else {
lb2 = neginf;
}
if ((s < 2*target_length-1) && (get_target_prime(targets_data, tg_batch_offset, tg_target_stride, s+2, BLANK) !=
current_target_prime)) {
lb3 = log_beta_a[t+1][s+2];
if (lb3 > lbmax)
lbmax = lb3;
} else {
lb3 = neginf;
}
if (lbmax == neginf)
lbmax = 0;
log_beta_a[t][s] = std::log(std::exp(lb1-lbmax)+std::exp(lb2-lbmax)+std::exp(lb3-lbmax))+lbmax + cur_logprob;
// one might check whether one can vectorize this better when done after the t-loop...
// now that we have beta, we fill in the sum of alpha*beta in eq (16)
// in contrast to the cuda implementation, we only parallelize over the batch, so we don't have a concurrency
// issue (several s can map to the same target character)
// collected[b, t, target'[s]] "log+=" log_alpha[t, s]+log_beta[t, s]
scalar_t log_alpha_beta = log_alpha_a[t][s] + log_beta_a[t][s];
scalar_t log_prod_n = 0;
if (current_target_prime != BLANK && current_target_prime != BLANK_1) {
for (int64_t i = 0; i < num_realval; ++i) {
log_prod_n += custom_distance_forward_log(targets_realval_data_a[s / 2][i], realval_data_a[t][i], sigma);
}
}
scalar_t log_alpha_beta_div_pr = log_alpha_beta - log_prod_n;
scalar_t &lcab = grad_a[t][current_target_prime];
if (lcab == neginf) {
lcab = log_alpha_beta_div_pr;
} else {
scalar_t max = std::max(lcab, log_alpha_beta_div_pr);
lcab = std::log(std::exp(lcab-max)+std::exp(log_alpha_beta_div_pr-max))+max;
}
if (current_target_prime != BLANK && current_target_prime != BLANK_1) {
scalar_t log_term1 = log_alpha_beta - log_probs_a[t][current_target_prime] - 2 * log_prod_n;
for (int64_t i = 0; i != num_realval; ++i) {
scalar_t fl = custom_distance_forward_log(targets_realval_data_a[s / 2][i], realval_data_a[t][i], sigma);
scalar_t log_constant_factors = log_prod_n - fl;
scalar_t grad_dp_dmu = -std::exp(log_term1 + log_constant_factors + nll) * custom_distance_backward(targets_realval_data_a[s / 2][i], realval_data_a[t][i], sigma);
grad_realval_acc[i] += grad_dp_dmu;
}
}
}
for (int64_t i = 0; i != num_realval; ++i) {
grad_realval_a[t][i] = grad_realval_acc[i] * gr;
}
}
// now grad has the sum of eq (16)
// now we wrap up the calculation by adding in the remaining items of eq (16)
// this could be a great target for further vectorization.
// grad is the output gradient, nll is the loss. Note that the likelihood -nll is the Z of eq (16)
for (int64_t t = 0; t < input_length; t++) { // or go for the full thing?
for (int64_t c = 0; c < num_labels; c++) {
scalar_t& res = grad_a[t][c];
scalar_t lp = log_probs_a[t][c];
res = (std::exp(lp)-std::exp(res + nll - lp)) * gr;
}
}
// zero the remainder
for (auto l : c10::irange(input_length, max_input_length)) {
// grad_batch.select(0, l).zero_();
fill_1d_iter_local.unsafe_replace_operand(0, grad_a[l].data());
fill_kernel(fill_1d_iter_local, 0);
}
}
});
return std::make_tuple(grad, grad_realval);
}
std::tuple<Tensor, Tensor> custom_ctc_loss_cpu(
const Tensor& log_probs,
const Tensor& targets,
const Tensor& realval,
const Tensor& targets_realval,
const Tensor& input_lengths,
const Tensor& target_lengths,
double const sigma,
int64_t BLANK,
int64_t BLANK_1,
bool zero_infinity
) {
(void)zero_infinity; // only used for backwards
Tensor ilc = input_lengths.to(Device(at::kCPU), at::kLong).contiguous();
Tensor tlc = target_lengths.to(Device(at::kCPU), at::kLong).contiguous();
IntArrayRef il(ilc.data_ptr<int64_t>(), ilc.numel());
IntArrayRef tl(tlc.data_ptr<int64_t>(), tlc.numel());
return AT_DISPATCH_FLOATING_TYPES(log_probs.scalar_type(), "ctc_loss_cpu", [&] {
if (targets.scalar_type() == kLong) {
return custom_ctc_loss_cpu_template<scalar_t, kLong>(log_probs, targets, realval, targets_realval, il, tl, static_cast<scalar_t>(sigma), BLANK, BLANK_1);
} else {
return custom_ctc_loss_cpu_template<scalar_t, kInt>(log_probs, targets, realval, targets_realval, il, tl, static_cast<scalar_t>(sigma), BLANK, BLANK_1);
}
});
}
std::tuple<Tensor, Tensor> custom_ctc_loss_backward_cpu(
const Tensor& grad_out,
const Tensor& log_probs,
const Tensor& targets,
const Tensor& realval,
const Tensor& targets_realval,
const Tensor& input_lengths,
const Tensor& target_lengths,
const Tensor& neg_log_likelihood,
const Tensor& log_alpha,
double const sigma,
int64_t BLANK,
int64_t BLANK_1,
bool zero_infinity
) {
Tensor ilc = input_lengths.to(Device(at::kCPU), at::kLong).contiguous();
Tensor tlc = target_lengths.to(Device(at::kCPU), at::kLong).contiguous();
IntArrayRef il(ilc.data_ptr<int64_t>(), ilc.numel());
IntArrayRef tl(tlc.data_ptr<int64_t>(), tlc.numel());
return AT_DISPATCH_FLOATING_TYPES(log_probs.scalar_type(), "ctc_loss_backward_cpu", [&] {
if (targets.scalar_type() == kLong) {
return custom_ctc_loss_backward_cpu_template<scalar_t,kLong>(grad_out, log_probs, targets, realval, targets_realval, il, tl, neg_log_likelihood, log_alpha, static_cast<scalar_t>(sigma), BLANK, BLANK_1, zero_infinity);
} else {
return custom_ctc_loss_backward_cpu_template<scalar_t,kInt>(grad_out, log_probs, targets, realval, targets_realval, il, tl, neg_log_likelihood, log_alpha, static_cast<scalar_t>(sigma), BLANK, BLANK_1, zero_infinity);
}
});
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &custom_ctc_loss_cpu, "custom CTC forward");
m.def("backward", &custom_ctc_loss_backward_cpu, "custom CTC backward");
}
|