File size: 7,295 Bytes
9dce458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

import torch
import custom_ctc
import custom_ctc_gpu

import numpy as np

import torch.nn.functional as F
from torch.autograd import gradcheck

custom_ctc_f = custom_ctc.CustomCTCLossFunction.apply
custom_ctc_f_gpu = custom_ctc_gpu.CustomCTCLossFunction.apply

def test_ctc_loss_custom(device):
    batch_size = 64
    num_labels = 101
    target_length = 15
    gradcheck_input_size = 10

    ZERO_NONE = 0
    ZERO_SOME = 1
    ZERO_ALL = 2

    # input_length, vary_lengths, zero_lengths
    tests = [(150, False, ZERO_NONE),
                (150, True, ZERO_NONE),
                (50, True, ZERO_SOME),
                (50, True, ZERO_ALL)]

    tests += [(50, False, ZERO_NONE),
                (50, True, ZERO_NONE),
                (150, True, ZERO_SOME),
                (150, True, ZERO_ALL)]

    for input_length, vary_lengths, zero_mode in tests:
        targets = torch.randint(1, num_labels, (batch_size, target_length),
                                device=device, dtype=torch.long)
        x = torch.randn(gradcheck_input_size, dtype=torch.double, device=device, requires_grad=True)
        tile_factors = torch.randn(input_length * batch_size * num_labels // gradcheck_input_size + 1,
                                    device=device)
        input_lengths = [(torch.randint(input_length // 2, input_length + 1, ()).item()
                            if vary_lengths or i == 0 else input_length) for i in range(batch_size)]
        if zero_mode == ZERO_ALL:
            target_lengths = [0 for _ in range(batch_size)]
        else:
            target_lengths = [(torch.randint(target_length // 2, target_length + 1, ()).item()
                                if vary_lengths else target_length) for _ in range(batch_size)]
            if zero_mode == ZERO_SOME:
                idxes = torch.randint(0, batch_size, (10,))
                for i in idxes:
                    target_lengths[i] = 0

        num_realval = np.random.randint(1, 16)
        rv_x = torch.randn(gradcheck_input_size, dtype=torch.double, device=device, requires_grad=True)
        tile_factors_rv = torch.randn(batch_size * input_length * num_realval // gradcheck_input_size + 1,
                                    device=device)
                                    
        targets_realvals = torch.randn(batch_size, input_length, num_realval, dtype=torch.double)

        blank1 = np.random.randint(1, num_labels - 1)

        def ctc_after_softmax(x, rv):
            x_full = ((x[:, None] * tile_factors[None, :]).view(-1)[:input_length * batch_size * num_labels]
                        .view(batch_size, input_length, num_labels))
            rv_full = ((rv[:, None] * tile_factors_rv[None, :]).view(-1)[:input_length * batch_size * num_realval]
                        .view(batch_size, input_length, num_realval))
            log_probs = torch.log_softmax(x_full, 2)
            return custom_ctc_f(log_probs, targets, rv_full, targets_realvals, input_lengths, target_lengths, 2.2, 0, blank1, 'mean', True)

        gradcheck(ctc_after_softmax, [x, rv_x])


def test_ctc_loss_custom_gpu(device, fp = torch.float32):
    print('testing GPU gradient for %s' % str(fp))
    batch_size = 64
    num_labels = 101
    target_length = 15
    gradcheck_input_size = 10

    ZERO_NONE = 0
    ZERO_SOME = 1
    ZERO_ALL = 2

    # input_length, vary_lengths, zero_lengths
    tests = [(150, False, ZERO_NONE),
                (150, True, ZERO_NONE),
                (50, True, ZERO_SOME),
                (50, True, ZERO_ALL)]

    tests += [(50, False, ZERO_NONE),
                (50, True, ZERO_NONE),
                (150, True, ZERO_SOME),
                (150, True, ZERO_ALL)]

    for input_length, vary_lengths, zero_mode in tests:
        targets = torch.randint(1, num_labels, (batch_size, target_length),
                                device=device, dtype=torch.long)
        x = torch.randn(gradcheck_input_size, dtype=fp, device=device)
        tile_factors = torch.randn(input_length * batch_size * num_labels // gradcheck_input_size + 1,
                                    device=device)
        input_lengths = [(torch.randint(input_length // 2, input_length + 1, ()).item()
                            if vary_lengths or i == 0 else input_length) for i in range(batch_size)]
        if zero_mode == ZERO_ALL:
            target_lengths = [0 for _ in range(batch_size)]
        else:
            target_lengths = [(torch.randint(target_length // 2, target_length + 1, ()).item()
                                if vary_lengths else target_length) for _ in range(batch_size)]
            if zero_mode == ZERO_SOME:
                idxes = torch.randint(0, batch_size, (10,))
                for i in idxes:
                    target_lengths[i] = 0

        num_realval = np.random.randint(1, 16)
        rv_x = torch.randn(gradcheck_input_size, dtype=fp, device=device)
        tile_factors_rv = torch.randn(batch_size * input_length * num_realval // gradcheck_input_size + 1,
                                    device=device)
                                    
        targets_realvals = torch.randn(batch_size, input_length, num_realval, dtype=fp)

        blank1 = np.random.randint(1, num_labels - 1)

        x_full = ((x[:, None] * tile_factors[None, :]).view(-1)[:input_length * batch_size * num_labels]
                    .view(batch_size, input_length, num_labels))
        rv_full = ((rv_x[:, None] * tile_factors_rv[None, :]).view(-1)[:input_length * batch_size * num_realval]
                    .view(batch_size, input_length, num_realval))
        log_probs = torch.log_softmax(x_full, 2)
        log_probs.requires_grad_()
        rv_full.requires_grad_()
        grad_out = torch.randn(batch_size, device='cpu', dtype=fp)
        loss_native = custom_ctc_f(log_probs, targets, rv_full, targets_realvals, input_lengths, target_lengths, 1, 0, blank1, 'none', True)
        grad_native = torch.autograd.grad(loss_native, [log_probs, rv_full], grad_out)
        if torch.any(loss_native < 0) :
            breakpoint()
        
        log_probs.requires_grad_(False)
        rv_full.requires_grad_(False)
        log_probs = log_probs.cuda()
        rv_full = rv_full.cuda()
        log_probs.requires_grad_()
        rv_full.requires_grad_()
        targets = targets.cuda()
        targets_realvals = targets_realvals.cuda()

        loss_gpu = custom_ctc_f_gpu(log_probs, targets, rv_full, targets_realvals, input_lengths, target_lengths, 1, 0, blank1, 'none', True)
        grad_gpu = torch.autograd.grad(loss_gpu, [log_probs, rv_full], grad_out.cuda())
        #breakpoint()
        assert torch.allclose(loss_native, loss_gpu.cpu(), rtol=1e-4, atol=1e-4)
        print((grad_native[0] - grad_gpu[0].cpu()).abs().sum())
        if not torch.allclose(grad_native[0], grad_gpu[0].cpu(), rtol=1e-2, atol=1e-2) :
            breakpoint()
        print((grad_native[1] - grad_gpu[1].cpu()).abs().sum())
        assert torch.allclose(grad_native[1], grad_gpu[1].cpu(), rtol=1e-2, atol=1e-2)

if __name__ == '__main__' :
    test_ctc_loss_custom('cpu:0')
    for _ in range(100) :
        test_ctc_loss_custom_gpu('cpu:0')
        test_ctc_loss_custom_gpu('cpu:0', torch.double)
        #test_ctc_loss_custom_gpu('cpu:0', torch.half)
        print('test passed')