testapi / training /ocr /custom_ctc.py
Sunday01's picture
up
9dce458
raw
history blame
2.25 kB
import torch
import custom_ctc_cpp
Tensor = torch.Tensor
class CustomCTCLossFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
log_probs: Tensor,
targets: Tensor,
realval: Tensor,
targets_realval: Tensor,
input_lengths: Tensor,
target_lengths: Tensor,
sigma: float = 1,
blank: int = 0,
blank1: int = 0,
reduction: str = "mean",
zero_infinity: bool = False
):
assert reduction in ['none', 'mean']
if isinstance(input_lengths, list) :
input_lengths = Tensor(input_lengths).long().to(log_probs.device)
if isinstance(target_lengths, list) :
target_lengths = Tensor(target_lengths).long().to(log_probs.device)
neg_log_likelihood, log_alpha = custom_ctc_cpp.forward(log_probs, targets, realval, targets_realval, input_lengths, target_lengths, sigma, blank, blank1, zero_infinity)
ctx.save_for_backward(neg_log_likelihood, log_alpha, log_probs, targets, realval, targets_realval, input_lengths, target_lengths)
ctx.blank = blank
ctx.blank1 = blank1
ctx.zero_infinity = zero_infinity
ctx.sigma = sigma
ctx.reduction = reduction
if reduction == 'mean' :
return (neg_log_likelihood / target_lengths.clamp_min(1)).mean()
return neg_log_likelihood
@staticmethod
def backward(ctx, grad_out):
neg_log_likelihood, log_alpha, log_probs, targets, realval, targets_realval, input_lengths, target_lengths = ctx.saved_tensors
if ctx.reduction == 'mean' :
if grad_out.numel() == 0 :
grad_out = torch.ones_like(neg_log_likelihood)
else :
grad_out = grad_out.view(1).tile(neg_log_likelihood.size(0))
grad_out /= target_lengths.clamp_min(1)
grad_out /= log_probs.size(0)
outputs_cls, outputs_realval = custom_ctc_cpp.backward(grad_out, log_probs, targets, realval, targets_realval, input_lengths, target_lengths, neg_log_likelihood, log_alpha, ctx.sigma, ctx.blank, ctx.blank1, ctx.zero_infinity)
return outputs_cls, None, outputs_realval, None, None, None, None, None, None, None, None