testapi / manga_translator /ocr /xpos_relative_position.py
Sunday01's picture
up
9dce458
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import einops
import numpy as np
import torch
import torch.nn as nn
def fixed_pos_embedding(x):
seq_len, dim = x.shape
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim) / dim))
sinusoid_inp = (
torch.einsum("i , j -> i j", torch.arange(0, seq_len, dtype=torch.float), inv_freq).to(x)
)
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)
def rotate_every_two(x):
x1 = x[:, :, ::2]
x2 = x[:, :, 1::2]
x = torch.stack((-x2, x1), dim=-1)
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')\
def duplicate_interleave(m):
"""
A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy.
"""
dim0 = m.shape[0]
m = m.view(-1, 1) # flatten the matrix
m = m.repeat(1, 2) # repeat all elements into the 2nd dimension
m = m.view(dim0, -1) # reshape into a matrix, interleaving the copy
return m
def apply_rotary_pos_emb(x, sin, cos, scale=1):
sin, cos = map(lambda t: duplicate_interleave(t * scale), (sin, cos))
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
return (x * cos) + (rotate_every_two(x) * sin)
def apply_rotary_pos_emb2d(x, sin, cos, scale=1):
breakpoint()
sin, cos = map(lambda t: duplicate_interleave(t * scale), (sin, cos))
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
return (x * cos) + (rotate_every_two(x) * sin)
class XPOS(nn.Module):
def __init__(
self, head_dim, scale_base=512
):
super().__init__()
self.head_dim = head_dim
self.scale_base = scale_base
self.register_buffer(
"scale", (torch.arange(0, head_dim, 2) + 0.4 * head_dim) / (1.4 * head_dim)
)
def forward(self, x, offset=0, downscale=False):
length = x.shape[1]
min_pos = -(length + offset) // 2
max_pos = length + offset + min_pos
scale = self.scale ** torch.arange(min_pos, max_pos, 1).to(self.scale).div(self.scale_base)[:, None]
sin, cos = fixed_pos_embedding(scale)
if scale.shape[0] > length:
scale = scale[-length:]
sin = sin[-length:]
cos = cos[-length:]
if downscale:
scale = 1 / scale
x = apply_rotary_pos_emb(x, sin, cos, scale)
return x
class XPOS2D(nn.Module):
def __init__(
self, head_dim, scale_base=512
):
super().__init__()
self.xpos = XPOS(head_dim // 2, scale_base)
def forward(self, x: torch.Tensor, offset_x = 0, offset_y = 0, downscale=False):
"""
x: N, H, W, C
"""
N, H, W, C = x.shape
C = C // 2
[dir_x, dir_y] = x.chunk(2, dim = 3)
dir_x = einops.rearrange(dir_x, 'N H W C -> (N H) W C', N = N, H = H, W = W, C = C)
dir_y = einops.rearrange(dir_y, 'N H W C -> (N W) H C', N = N, H = H, W = W, C = C)
dir_x = self.xpos(dir_x, offset = offset_x, downscale = downscale)
dir_y = self.xpos(dir_y, offset = offset_y, downscale = downscale)
dir_x = einops.rearrange(dir_x, '(N H) W C -> N H W C', N = N, H = H, W = W, C = C)
dir_y = einops.rearrange(dir_y, '(N W) H C -> N H W C', N = N, H = H, W = W, C = C)
return torch.cat([dir_x, dir_y], dim = 3)
def test() :
e = XPOS2D(64, 512)
x = torch.randn(8, 10, 10, 64)
o = e(x)
print(o.shape)
if __name__ == '__main__' :
test()