|
|
|
|
|
|
|
import einops
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
def fixed_pos_embedding(x):
|
|
seq_len, dim = x.shape
|
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim) / dim))
|
|
sinusoid_inp = (
|
|
torch.einsum("i , j -> i j", torch.arange(0, seq_len, dtype=torch.float), inv_freq).to(x)
|
|
)
|
|
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)
|
|
|
|
def rotate_every_two(x):
|
|
x1 = x[:, :, ::2]
|
|
x2 = x[:, :, 1::2]
|
|
x = torch.stack((-x2, x1), dim=-1)
|
|
return x.flatten(-2)
|
|
|
|
def duplicate_interleave(m):
|
|
"""
|
|
A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy.
|
|
"""
|
|
dim0 = m.shape[0]
|
|
m = m.view(-1, 1)
|
|
m = m.repeat(1, 2)
|
|
m = m.view(dim0, -1)
|
|
return m
|
|
|
|
def apply_rotary_pos_emb(x, sin, cos, scale=1):
|
|
sin, cos = map(lambda t: duplicate_interleave(t * scale), (sin, cos))
|
|
|
|
return (x * cos) + (rotate_every_two(x) * sin)
|
|
|
|
def apply_rotary_pos_emb2d(x, sin, cos, scale=1):
|
|
breakpoint()
|
|
sin, cos = map(lambda t: duplicate_interleave(t * scale), (sin, cos))
|
|
|
|
return (x * cos) + (rotate_every_two(x) * sin)
|
|
|
|
class XPOS(nn.Module):
|
|
def __init__(
|
|
self, head_dim, scale_base=512
|
|
):
|
|
super().__init__()
|
|
self.head_dim = head_dim
|
|
self.scale_base = scale_base
|
|
self.register_buffer(
|
|
"scale", (torch.arange(0, head_dim, 2) + 0.4 * head_dim) / (1.4 * head_dim)
|
|
)
|
|
|
|
def forward(self, x, offset=0, downscale=False):
|
|
length = x.shape[1]
|
|
min_pos = -(length + offset) // 2
|
|
max_pos = length + offset + min_pos
|
|
scale = self.scale ** torch.arange(min_pos, max_pos, 1).to(self.scale).div(self.scale_base)[:, None]
|
|
sin, cos = fixed_pos_embedding(scale)
|
|
|
|
if scale.shape[0] > length:
|
|
scale = scale[-length:]
|
|
sin = sin[-length:]
|
|
cos = cos[-length:]
|
|
|
|
if downscale:
|
|
scale = 1 / scale
|
|
|
|
x = apply_rotary_pos_emb(x, sin, cos, scale)
|
|
return x
|
|
|
|
|
|
class XPOS2D(nn.Module):
|
|
def __init__(
|
|
self, head_dim, scale_base=512
|
|
):
|
|
super().__init__()
|
|
self.xpos = XPOS(head_dim // 2, scale_base)
|
|
|
|
def forward(self, x: torch.Tensor, offset_x = 0, offset_y = 0, downscale=False):
|
|
"""
|
|
x: N, H, W, C
|
|
"""
|
|
N, H, W, C = x.shape
|
|
C = C // 2
|
|
[dir_x, dir_y] = x.chunk(2, dim = 3)
|
|
dir_x = einops.rearrange(dir_x, 'N H W C -> (N H) W C', N = N, H = H, W = W, C = C)
|
|
dir_y = einops.rearrange(dir_y, 'N H W C -> (N W) H C', N = N, H = H, W = W, C = C)
|
|
dir_x = self.xpos(dir_x, offset = offset_x, downscale = downscale)
|
|
dir_y = self.xpos(dir_y, offset = offset_y, downscale = downscale)
|
|
dir_x = einops.rearrange(dir_x, '(N H) W C -> N H W C', N = N, H = H, W = W, C = C)
|
|
dir_y = einops.rearrange(dir_y, '(N W) H C -> N H W C', N = N, H = H, W = W, C = C)
|
|
return torch.cat([dir_x, dir_y], dim = 3)
|
|
|
|
def test() :
|
|
e = XPOS2D(64, 512)
|
|
x = torch.randn(8, 10, 10, 64)
|
|
o = e(x)
|
|
print(o.shape)
|
|
|
|
if __name__ == '__main__' :
|
|
test()
|
|
|