# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import einops import numpy as np import torch import torch.nn as nn def fixed_pos_embedding(x): seq_len, dim = x.shape inv_freq = 1.0 / (10000 ** (torch.arange(0, dim) / dim)) sinusoid_inp = ( torch.einsum("i , j -> i j", torch.arange(0, seq_len, dtype=torch.float), inv_freq).to(x) ) return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp) def rotate_every_two(x): x1 = x[:, :, ::2] x2 = x[:, :, 1::2] x = torch.stack((-x2, x1), dim=-1) return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')\ def duplicate_interleave(m): """ A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy. """ dim0 = m.shape[0] m = m.view(-1, 1) # flatten the matrix m = m.repeat(1, 2) # repeat all elements into the 2nd dimension m = m.view(dim0, -1) # reshape into a matrix, interleaving the copy return m def apply_rotary_pos_emb(x, sin, cos, scale=1): sin, cos = map(lambda t: duplicate_interleave(t * scale), (sin, cos)) # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2) return (x * cos) + (rotate_every_two(x) * sin) def apply_rotary_pos_emb2d(x, sin, cos, scale=1): breakpoint() sin, cos = map(lambda t: duplicate_interleave(t * scale), (sin, cos)) # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2) return (x * cos) + (rotate_every_two(x) * sin) class XPOS(nn.Module): def __init__( self, head_dim, scale_base=512 ): super().__init__() self.head_dim = head_dim self.scale_base = scale_base self.register_buffer( "scale", (torch.arange(0, head_dim, 2) + 0.4 * head_dim) / (1.4 * head_dim) ) def forward(self, x, offset=0, downscale=False): length = x.shape[1] min_pos = -(length + offset) // 2 max_pos = length + offset + min_pos scale = self.scale ** torch.arange(min_pos, max_pos, 1).to(self.scale).div(self.scale_base)[:, None] sin, cos = fixed_pos_embedding(scale) if scale.shape[0] > length: scale = scale[-length:] sin = sin[-length:] cos = cos[-length:] if downscale: scale = 1 / scale x = apply_rotary_pos_emb(x, sin, cos, scale) return x class XPOS2D(nn.Module): def __init__( self, head_dim, scale_base=512 ): super().__init__() self.xpos = XPOS(head_dim // 2, scale_base) def forward(self, x: torch.Tensor, offset_x = 0, offset_y = 0, downscale=False): """ x: N, H, W, C """ N, H, W, C = x.shape C = C // 2 [dir_x, dir_y] = x.chunk(2, dim = 3) dir_x = einops.rearrange(dir_x, 'N H W C -> (N H) W C', N = N, H = H, W = W, C = C) dir_y = einops.rearrange(dir_y, 'N H W C -> (N W) H C', N = N, H = H, W = W, C = C) dir_x = self.xpos(dir_x, offset = offset_x, downscale = downscale) dir_y = self.xpos(dir_y, offset = offset_y, downscale = downscale) dir_x = einops.rearrange(dir_x, '(N H) W C -> N H W C', N = N, H = H, W = W, C = C) dir_y = einops.rearrange(dir_y, '(N W) H C -> N H W C', N = N, H = H, W = W, C = C) return torch.cat([dir_x, dir_y], dim = 3) def test() : e = XPOS2D(64, 512) x = torch.randn(8, 10, 10, 64) o = e(x) print(o.shape) if __name__ == '__main__' : test()