Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
from diffusers import AutoencoderKL, DiffusionPipeline | |
import torch | |
from __future__ import annotations | |
import os | |
import PIL.Image | |
import spaces | |
MARKDOWN = """ | |
The demo is based on <a href="https://huggingface.co/dataautogpt3/OpenDalleV1.1">OpenDalle V1.1</a> by @dataautogpt3 | |
The demo is based on the fusion of different models to provide better performance, comparatively. | |
You can try out the prompts and check for yourself. | |
**Parts of codes are adopted from [@hysts's SD-XL demo](https://huggingface.co/spaces/hysts/SD-XL) running on A10G GPU ** | |
You can check out more of my spaces. Demo by [Sunder Ali Khowaja](https://sander-ali.github.io) - [Github](https://github.com/sander-ali) | |
""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<h1>Running on CPU 🥶 This demo does not work on CPU. </h1>" | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" | |
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "0") == "1" | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = DiffusionPipeline.from_pretrained("dataautogpt3/OpenDalleV1.1", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
pipe.enable_xformers_memory_efficient_attention() | |
if ENABLE_REFINER: | |
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
if ENABLE_CPU_OFFLOAD: | |
pipe.enable_model_cpu_offload() | |
if ENABLE_REFINER: | |
refiner.enable_model_cpu_offload() | |
else: | |
pipe.to(device) | |
if ENABLE_REFINER: | |
refiner.to(device) | |
if USE_TORCH_COMPILE: | |
pipe.unet = torch.compile(pipe.unet, mode='reduce-overhead', fullgraph=True) | |
if ENABLE_REFINER: | |
refiner.unet = torch.compile(refiner.unet, mode="reduce_overhead", fullgraph=True) | |
def infer( | |
prompt: str, | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale_base: float = 5.0, | |
guidance_scale_refiner: float = 5.0, | |
num_inference_steps_base: int = 25, | |
num_inference_steps_refiner: int = 25, | |
apply_refiner: bool = False, | |
negative_prompt: str = "", | |
prompt_2: str = "", | |
negative_prompt_2: str = "", | |
use_negative_prompt: bool = False, | |
use_prompt_2: bool = False, | |
use_negative_prompt_2: bool = False, | |
progress=gr.Progress(track_tqdm=True), | |
) -> PIL.Image.Image: | |
print(f"** Generating image for: \"{prompt}\" **") | |
generator = torch.Generator().manual_seed(seed) | |
if not use_negative_prompt: | |
negative_prompt = None # type: ignore | |
if not use_prompt_2: | |
prompt_2 = None # type: ignore | |
if not use_negative_prompt_2: | |
negative_prompt_2 = None # type: ignore | |
if not apply_refiner: | |
return pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale_base, | |
num_inference_steps=num_inference_steps_base, | |
generator=generator, | |
output_type="pil", | |
).images[0] | |
else: | |
latents = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale_base, | |
num_inference_steps=num_inference_steps_base, | |
generator=generator, | |
output_type="latent", | |
).images | |
image = refiner( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
guidance_scale=guidance_scale_refiner, | |
num_inference_steps=num_inference_steps_refiner, | |
image=latents, | |
generator=generator, | |
).images[0] | |
return image | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
# if torch.cuda.is_available(): | |
# power_device = "GPU" | |
# else: | |
# power_device = "CPU" | |
theme = gr.themes.Glass( | |
primary_hue="blue", | |
secondary_hue="blue", | |
neutral_hue="gray", | |
text_size="md", | |
spacing_size="md", | |
radius_size="md", | |
font=[gr.themes.GoogleFont('Source Sans Pro'), 'ui-sans-serif', 'system-ui', 'sans-serif'], | |
).set( | |
body_background_fill_dark='*background_fill_primary', | |
background_fill_primary_dark='*neutral_950', | |
background_fill_secondary='*neutral_50', | |
background_fill_secondary_dark='*neutral_900', | |
border_color_primary_dark='*neutral_700', | |
block_background_fill='*background_fill_primary', | |
block_background_fill_dark='*neutral_800', | |
block_border_width='1px', | |
block_label_background_fill='*background_fill_primary', | |
block_label_background_fill_dark='*background_fill_secondary', | |
block_label_text_color='*neutral_500', | |
block_label_text_size='*text_sm', | |
block_label_text_weight='400', | |
block_shadow='none', | |
block_shadow_dark='none', | |
block_title_text_color='*neutral_500', | |
block_title_text_weight='400', | |
panel_border_width='0', | |
panel_border_width_dark='0', | |
checkbox_background_color_dark='*neutral_800', | |
checkbox_border_width='*input_border_width', | |
checkbox_label_border_width='*input_border_width', | |
input_background_fill='*neutral_100', | |
input_background_fill_dark='*neutral_700', | |
input_border_color_focus_dark='*neutral_700', | |
input_border_width='0px', | |
input_border_width_dark='0px', | |
slider_color='#2563eb', | |
slider_color_dark='#2563eb', | |
table_even_background_fill_dark='*neutral_950', | |
table_odd_background_fill_dark='*neutral_900', | |
button_border_width='*input_border_width', | |
button_shadow_active='none', | |
button_primary_background_fill='*primary_200', | |
button_primary_background_fill_dark='*primary_700', | |
button_primary_background_fill_hover='*button_primary_background_fill', | |
button_primary_background_fill_hover_dark='*button_primary_background_fill', | |
button_secondary_background_fill='*neutral_200', | |
button_secondary_background_fill_dark='*neutral_600', | |
button_secondary_background_fill_hover='*button_secondary_background_fill', | |
button_secondary_background_fill_hover_dark='*button_secondary_background_fill', | |
button_cancel_background_fill='*button_secondary_background_fill', | |
button_cancel_background_fill_dark='*button_secondary_background_fill', | |
button_cancel_background_fill_hover='*button_cancel_background_fill', | |
button_cancel_background_fill_hover_dark='*button_cancel_background_fill' | |
) | |
with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(MARKDOWN) | |
gr.DuplicateButton() | |
with gr.Group(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
container=False, | |
placeholder="Enter your prompt", | |
) | |
run_button = gr.Button("Generate") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Row(): | |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False) | |
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False) | |
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
prompt_2 = gr.Text( | |
label="Prompt 2", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
visible=False, | |
) | |
negative_prompt_2 = gr.Text( | |
label="Negative prompt 2", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER) | |
with gr.Row(): | |
guidance_scale_base = gr.Slider( | |
label="Guidance scale for base", | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps_base = gr.Slider( | |
label="Number of inference steps for base", | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=25, | |
) | |
with gr.Row(visible=False) as refiner_params: | |
guidance_scale_refiner = gr.Slider( | |
label="Guidance scale for refiner", | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps_refiner = gr.Slider( | |
label="Number of inference steps for refiner", | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=25, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=result, | |
fn=infer, | |
cache_examples=CACHE_EXAMPLES, | |
) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
queue=False, | |
api_name=False, | |
) | |
use_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_prompt_2, | |
outputs=prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
use_negative_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt_2, | |
outputs=negative_prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
apply_refiner.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=apply_refiner, | |
outputs=refiner_params, | |
queue=False, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
negative_prompt.submit, | |
prompt_2.submit, | |
negative_prompt_2.submit, | |
run_button.click, | |
], | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
prompt_2, | |
negative_prompt_2, | |
use_negative_prompt, | |
use_prompt_2, | |
use_negative_prompt_2, | |
seed, | |
width, | |
height, | |
guidance_scale_base, | |
guidance_scale_refiner, | |
num_inference_steps_base, | |
num_inference_steps_refiner, | |
apply_refiner, | |
], | |
outputs=result, | |
api_name="run", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20, api_open=False).launch(show_api=False) |