File size: 8,360 Bytes
3d54858
 
 
 
 
 
 
 
 
 
 
3334e80
3d54858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f917714
3d54858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f917714
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import spaces
import gradio as gr
import numpy as np
import torch

from toonmage import attention_processor as attention
from toonmage.pipeline import ToonMagePipeline
from toonmage.utils import resize_numpy_image_long, seed_everything

torch.set_grad_enabled(False)

pipeline = ToonMagePipeline()

# other params
DEFAULT_NEGATIVE_PROMPT = (
    'cross-eyed, blurry, deformed eyeballs, deformed, deformed or partially rendered eyes, partially rendered objects, low resolution, disfigured hands, ugly, mutated, glitch,'
    'watermark, text, artifacts noise, worst quality, low quality, non-HDRi, lowres, flaws, flaws in the face, flaws in the eyes, extra limbs, signature'
)


@spaces.GPU
def run(*args):
    id_image = args[0]
    supp_images = args[1:4]
    prompt, neg_prompt, scale, n_samples, seed, steps, H, W, id_scale, mode, id_mix = args[4:]

    pipeline.debug_img_list = []
    if mode == 'fidelity':
        attention.NUM_ZERO = 8
        attention.ORTHO = False
        attention.ORTHO_v2 = True
    elif mode == 'extremely style':
        attention.NUM_ZERO = 16
        attention.ORTHO = True
        attention.ORTHO_v2 = False
    else:
        raise ValueError

    if id_image is not None:
        id_image = resize_numpy_image_long(id_image, 1024)
        id_embeddings = pipeline.get_id_embedding(id_image)
        for supp_id_image in supp_images:
            if supp_id_image is not None:
                supp_id_image = resize_numpy_image_long(supp_id_image, 1024)
                supp_id_embeddings = pipeline.get_id_embedding(supp_id_image)
                id_embeddings = torch.cat(
                    (id_embeddings, supp_id_embeddings if id_mix else supp_id_embeddings[:, :5]), dim=1
                )
    else:
        id_embeddings = None

    seed_everything(seed)
    ims = []
    for _ in range(n_samples):
        img = pipeline.inference(prompt, (1, H, W), neg_prompt, id_embeddings, id_scale, scale, steps)[0]
        ims.append(np.array(img))

    return ims, pipeline.debug_img_list


_MARKDOWN_ = """
This demo utilizes <a href="https://huggingface.co/black-forest-labs/FLUX.1-dev">FLUX Pipeline</a> for Image to Image Translation
**Tips**
- Smaller value of timestep to start inserting ID would lead to higher fidelity, however, it will reduce the editability; and vice versa.
Its value range is from 0 - 4. If you want to generate a stylized scene; use the value of 0 - 1. If you want to generate a photorealistic image; use the value of 4. 
-It is recommended to use fake CFG by setting the true CFG scale value to 1 while you can vary the guidance scale. However, in a few cases, utilizing a true CFG can yield better results.
Try out with different prompts using your image and do provide your feedback.
**Demo by [Sunder Ali Khowaja](https://sander-ali.github.io) - [X](https://x.com/SunderAKhowaja) -[Github](https://github.com/sander-ali) -[Hugging Face](https://huggingface.co/SunderAli17)**
"""

theme = gr.themes.Soft(
    font=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
js_func = """
function refresh() {
    const url = new URL(window.location);
    if (url.searchParams.get('__theme') !== 'dark') {
        url.searchParams.set('__theme', 'dark');
        window.location.href = url.href;
    }
}
"""


with gr.Blocks(title="ToonMagev2", js = js_func, theme = theme) as SAK:
    gr.Markdown(_MARKDOWN_)
    with gr.Row():
        with gr.Column():
            with gr.Row():
                face_image = gr.Image(label="ID image (main)", sources="upload", type="numpy", height=256)
                supp_image1 = gr.Image(
                    label="Additional ID image (auxiliary)", sources="upload", type="numpy", height=256
                )
                supp_image2 = gr.Image(
                    label="Additional ID image (auxiliary)", sources="upload", type="numpy", height=256
                )
                supp_image3 = gr.Image(
                    label="Additional ID image (auxiliary)", sources="upload", type="numpy", height=256
                )
            prompt = gr.Textbox(label="Prompt", value='portrait,cinematic,wolf ears,white hair')
            submit = gr.Button("Generate")
            neg_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_NEGATIVE_PROMPT)
            scale = gr.Slider(
                label="CFG, recommend value range [1, 1.5], 1 will be faster ",
                value=1.2,
                minimum=1,
                maximum=1.5,
                step=0.1,
            )
            n_samples = gr.Slider(label="Num samples", value=4, minimum=1, maximum=4, step=1)
            seed = gr.Slider(
                label="Seed", value=42, minimum=np.iinfo(np.uint32).min, maximum=np.iinfo(np.uint32).max, step=1
            )
            steps = gr.Slider(label="Steps", value=4, minimum=1, maximum=8, step=1)
            with gr.Row():
                H = gr.Slider(label="Height", value=1024, minimum=512, maximum=1280, step=64)
                W = gr.Slider(label="Width", value=768, minimum=512, maximum=1280, step=64)
            with gr.Row():
                id_scale = gr.Slider(label="ID scale", minimum=0, maximum=5, step=0.05, value=0.8, interactive=True)
                mode = gr.Dropdown(label="mode", choices=['fidelity', 'extremely style'], value='fidelity')
                id_mix = gr.Checkbox(
                    label="ID Mix (if you want to mix two ID image, please turn this on, otherwise, turn this off)",
                    value=False,
                )

            gr.Markdown("## Examples")
            example_inps = [
                [
                    'portrait,cinematic,wolf ears,white hair',
                    'sample_img/sample_img_test24.jpg',
                    'fidelity',
                ]
            ]
            gr.Examples(examples=example_inps, inputs=[prompt, face_image, mode], label='realistic')

            example_inps = [
                [
                    'portrait, impressionist painting, loose brushwork, vibrant color, light and shadow play',
                    'sample_img/sample_img_test1.jpg',
                    'fidelity',
                ]
            ]
            gr.Examples(examples=example_inps, inputs=[prompt, face_image, mode], label='painting style')

            example_inps = [
                [
                    'portrait, flat papercut style, silhouette, clean cuts, paper, sharp edges, minimalist,color block,man',
                    'sample_img/lecun.jpg',
                    'fidelity',
                ]
            ]
            gr.Examples(examples=example_inps, inputs=[prompt, face_image, mode], label='papercut style')

            example_inps = [
                [
                    'woman,cartoon,solo,Popmart Blind Box, Super Mario, 3d',
                    'sample_img/sample_img_test24.jpg',
                    'fidelity',
                ]
            ]
            gr.Examples(examples=example_inps, inputs=[prompt, face_image, mode], label='3d style')

            example_inps = [
                [
                    'portrait, the legend of zelda, anime',
                    'sample_img/image1.png',
                    'extremely style',
                ]
            ]
            gr.Examples(examples=example_inps, inputs=[prompt, face_image, mode], label='anime style')

            example_inps = [
                [
                    'portrait, superman',
                    'sample_img/lecun.jpg',
                    'sample_img/sample_img_test1.jpg',
                    'fidelity',
                    True,
                ]
            ]
            gr.Examples(examples=example_inps, inputs=[prompt, face_image, supp_image1, mode, id_mix], label='id mix')

        with gr.Column():
            output = gr.Gallery(label='Output', elem_id="gallery")
            intermediate_output = gr.Gallery(label='DebugImage', elem_id="gallery", visible=False)
            gr.Markdown(_CITE_)

    inps = [
        face_image,
        supp_image1,
        supp_image2,
        supp_image3,
        prompt,
        neg_prompt,
        scale,
        n_samples,
        seed,
        steps,
        H,
        W,
        id_scale,
        mode,
        id_mix,
    ]
    submit.click(fn=run, inputs=inps, outputs=[output, intermediate_output])


SAK.launch()