Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
3 |
import spaces
|
@@ -111,56 +156,70 @@ def draw_ocr_bboxes(image, prediction):
|
|
111 |
|
112 |
def process_image(image, task_prompt, text_input=None):
|
113 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
114 |
-
if task_prompt == '
|
|
|
115 |
result = run_example(task_prompt, image)
|
116 |
return result, None
|
117 |
-
elif task_prompt == '
|
|
|
118 |
result = run_example(task_prompt, image)
|
119 |
return result, None
|
120 |
-
elif task_prompt == '
|
|
|
121 |
result = run_example(task_prompt, image)
|
122 |
return result, None
|
123 |
-
elif task_prompt == '
|
|
|
124 |
results = run_example(task_prompt, image)
|
125 |
fig = plot_bbox(image, results['<OD>'])
|
126 |
return results, fig_to_pil(fig)
|
127 |
-
elif task_prompt == '
|
|
|
128 |
results = run_example(task_prompt, image)
|
129 |
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
|
130 |
return results, fig_to_pil(fig)
|
131 |
-
elif task_prompt == '
|
|
|
132 |
results = run_example(task_prompt, image)
|
133 |
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
|
134 |
return results, fig_to_pil(fig)
|
135 |
-
elif task_prompt == '
|
|
|
136 |
results = run_example(task_prompt, image, text_input)
|
137 |
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
138 |
return results, fig_to_pil(fig)
|
139 |
-
elif task_prompt == '
|
|
|
140 |
results = run_example(task_prompt, image, text_input)
|
141 |
output_image = copy.deepcopy(image)
|
142 |
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
143 |
return results, output_image
|
144 |
-
elif task_prompt == '
|
|
|
145 |
results = run_example(task_prompt, image, text_input)
|
146 |
output_image = copy.deepcopy(image)
|
147 |
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
|
148 |
return results, output_image
|
149 |
-
elif task_prompt == '
|
|
|
150 |
results = run_example(task_prompt, image, text_input)
|
151 |
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
|
152 |
fig = plot_bbox(image, bbox_results)
|
153 |
return results, fig_to_pil(fig)
|
154 |
-
elif task_prompt == '
|
|
|
155 |
results = run_example(task_prompt, image, text_input)
|
156 |
return results, None
|
157 |
-
elif task_prompt == '
|
|
|
158 |
results = run_example(task_prompt, image, text_input)
|
159 |
return results, None
|
160 |
-
elif task_prompt == '
|
|
|
161 |
result = run_example(task_prompt, image)
|
162 |
return result, None
|
163 |
-
elif task_prompt == '
|
|
|
164 |
results = run_example(task_prompt, image)
|
165 |
output_image = copy.deepcopy(image)
|
166 |
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
|
@@ -183,11 +242,11 @@ with gr.Blocks(css=css) as demo:
|
|
183 |
with gr.Column():
|
184 |
input_img = gr.Image(label="Input Picture")
|
185 |
task_prompt = gr.Dropdown(choices=[
|
186 |
-
'
|
187 |
-
'
|
188 |
-
'
|
189 |
-
'
|
190 |
-
'
|
191 |
], label="Task Prompt")
|
192 |
text_input = gr.Textbox(label="Text Input (optional)")
|
193 |
submit_btn = gr.Button(value="Submit")
|
@@ -197,8 +256,8 @@ with gr.Blocks(css=css) as demo:
|
|
197 |
|
198 |
gr.Examples(
|
199 |
examples=[
|
200 |
-
["image1.jpg", '
|
201 |
-
["image2.jpg", '
|
202 |
],
|
203 |
inputs=[input_img, task_prompt],
|
204 |
outputs=[output_text, output_img],
|
@@ -209,4 +268,4 @@ with gr.Blocks(css=css) as demo:
|
|
209 |
|
210 |
submit_btn.click(process_image, [input_img, task_prompt, text_input], [output_text, output_img])
|
211 |
|
212 |
-
demo.launch(debug=True)
|
|
|
1 |
+
Hugging Face's logo
|
2 |
+
Hugging Face
|
3 |
+
Search models, datasets, users...
|
4 |
+
Models
|
5 |
+
Datasets
|
6 |
+
Spaces
|
7 |
+
Posts
|
8 |
+
Docs
|
9 |
+
Solutions
|
10 |
+
Pricing
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
Spaces:
|
15 |
+
|
16 |
+
gokaygokay
|
17 |
+
/
|
18 |
+
Florence-2
|
19 |
+
|
20 |
+
|
21 |
+
like
|
22 |
+
0
|
23 |
+
|
24 |
+
Logs
|
25 |
+
App
|
26 |
+
Files
|
27 |
+
Community
|
28 |
+
Settings
|
29 |
+
Florence-2
|
30 |
+
/
|
31 |
+
app.py
|
32 |
+
|
33 |
+
gokaygokay's picture
|
34 |
+
gokaygokay
|
35 |
+
Update app.py
|
36 |
+
ca16909
|
37 |
+
VERIFIED
|
38 |
+
12 minutes ago
|
39 |
+
raw
|
40 |
+
history
|
41 |
+
blame
|
42 |
+
edit
|
43 |
+
delete
|
44 |
+
No virus
|
45 |
+
8.31 kB
|
46 |
import gradio as gr
|
47 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
48 |
import spaces
|
|
|
156 |
|
157 |
def process_image(image, task_prompt, text_input=None):
|
158 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
159 |
+
if task_prompt == 'Caption':
|
160 |
+
task_prompt = '<CAPTION>'
|
161 |
result = run_example(task_prompt, image)
|
162 |
return result, None
|
163 |
+
elif task_prompt == 'Detailed Caption':
|
164 |
+
task_prompt = '<DETAILED_CAPTION>'
|
165 |
result = run_example(task_prompt, image)
|
166 |
return result, None
|
167 |
+
elif task_prompt == 'More Detailed Caption':
|
168 |
+
task_prompt = '<MORE_DETAILED_CAPTION>'
|
169 |
result = run_example(task_prompt, image)
|
170 |
return result, None
|
171 |
+
elif task_prompt == 'Object Detection':
|
172 |
+
task_prompt = '<OD>'
|
173 |
results = run_example(task_prompt, image)
|
174 |
fig = plot_bbox(image, results['<OD>'])
|
175 |
return results, fig_to_pil(fig)
|
176 |
+
elif task_prompt == 'Dense Region Caption':
|
177 |
+
task_prompt = '<DENSE_REGION_CAPTION>'
|
178 |
results = run_example(task_prompt, image)
|
179 |
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
|
180 |
return results, fig_to_pil(fig)
|
181 |
+
elif task_prompt == 'Region Proposal':
|
182 |
+
task_prompt = '<REGION_PROPOSAL>'
|
183 |
results = run_example(task_prompt, image)
|
184 |
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
|
185 |
return results, fig_to_pil(fig)
|
186 |
+
elif task_prompt == 'Caption to Phrase Grounding':
|
187 |
+
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
188 |
results = run_example(task_prompt, image, text_input)
|
189 |
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
190 |
return results, fig_to_pil(fig)
|
191 |
+
elif task_prompt == 'Referring Expression Segmentation':
|
192 |
+
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
|
193 |
results = run_example(task_prompt, image, text_input)
|
194 |
output_image = copy.deepcopy(image)
|
195 |
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
196 |
return results, output_image
|
197 |
+
elif task_prompt == 'Region to Segmentation':
|
198 |
+
task_prompt = '<REGION_TO_SEGMENTATION>'
|
199 |
results = run_example(task_prompt, image, text_input)
|
200 |
output_image = copy.deepcopy(image)
|
201 |
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
|
202 |
return results, output_image
|
203 |
+
elif task_prompt == 'Open Vocabulary Detection':
|
204 |
+
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
205 |
results = run_example(task_prompt, image, text_input)
|
206 |
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
|
207 |
fig = plot_bbox(image, bbox_results)
|
208 |
return results, fig_to_pil(fig)
|
209 |
+
elif task_prompt == 'Region to Category':
|
210 |
+
task_prompt = '<REGION_TO_CATEGORY>'
|
211 |
results = run_example(task_prompt, image, text_input)
|
212 |
return results, None
|
213 |
+
elif task_prompt == 'Region to Description':
|
214 |
+
task_prompt = '<REGION_TO_DESCRIPTION>'
|
215 |
results = run_example(task_prompt, image, text_input)
|
216 |
return results, None
|
217 |
+
elif task_prompt == 'OCR':
|
218 |
+
task_prompt = '<OCR>'
|
219 |
result = run_example(task_prompt, image)
|
220 |
return result, None
|
221 |
+
elif task_prompt == 'OCR with Region':
|
222 |
+
task_prompt = '<OCR_WITH_REGION>'
|
223 |
results = run_example(task_prompt, image)
|
224 |
output_image = copy.deepcopy(image)
|
225 |
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
|
|
|
242 |
with gr.Column():
|
243 |
input_img = gr.Image(label="Input Picture")
|
244 |
task_prompt = gr.Dropdown(choices=[
|
245 |
+
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
|
246 |
+
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
|
247 |
+
'Referring Expression Segmentation', 'Region to Segmentation',
|
248 |
+
'Open Vocabulary Detection', 'Region to Category', 'Region to Description',
|
249 |
+
'OCR', 'OCR with Region'
|
250 |
], label="Task Prompt")
|
251 |
text_input = gr.Textbox(label="Text Input (optional)")
|
252 |
submit_btn = gr.Button(value="Submit")
|
|
|
256 |
|
257 |
gr.Examples(
|
258 |
examples=[
|
259 |
+
["image1.jpg", 'Caption'],
|
260 |
+
["image2.jpg", 'Detailed Caption']
|
261 |
],
|
262 |
inputs=[input_img, task_prompt],
|
263 |
outputs=[output_text, output_img],
|
|
|
268 |
|
269 |
submit_btn.click(process_image, [input_img, task_prompt, text_input], [output_text, output_img])
|
270 |
|
271 |
+
demo.launch(debug=True)
|