|
import gradio as gr |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
|
|
|
|
model_name = "t5-base" |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
def translate_text(input_text): |
|
|
|
input_ids = tokenizer.encode(input_text, return_tensors="pt") |
|
|
|
output = model.generate(input_ids, max_length=50) |
|
|
|
output_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
return output_text |
|
|
|
|
|
iface = gr.Interface( |
|
fn=translate_text, |
|
inputs="text", |
|
outputs="text", |
|
title="English-Korean Translator", |
|
description="Enter English text to translate to Korean." |
|
) |
|
|
|
iface.launch() |
|
|