Spaces:
Running
Running
File size: 12,923 Bytes
6a662e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
All the functions to build the relevant models and modules
from the Hydra config.
"""
import typing as tp
import omegaconf
import torch
import audiocraft
from .. import quantization as qt
from ..modules.codebooks_patterns import (CoarseFirstPattern,
CodebooksPatternProvider,
DelayedPatternProvider,
MusicLMPattern,
ParallelPatternProvider,
UnrolledPatternProvider)
from ..modules.conditioners import (BaseConditioner, ChromaStemConditioner,
CLAPEmbeddingConditioner, ConditionFuser,
ConditioningProvider, LUTConditioner,
T5Conditioner)
from ..modules.diffusion_schedule import MultiBandProcessor, SampleProcessor
from ..utils.utils import dict_from_config
from .encodec import (CompressionModel, EncodecModel,
InterleaveStereoCompressionModel)
from .lm import LMModel
from .lm_magnet import MagnetLMModel
from .unet import DiffusionUnet
from .watermark import WMModel
def get_quantizer(
quantizer: str, cfg: omegaconf.DictConfig, dimension: int
) -> qt.BaseQuantizer:
klass = {"no_quant": qt.DummyQuantizer, "rvq": qt.ResidualVectorQuantizer}[
quantizer
]
kwargs = dict_from_config(getattr(cfg, quantizer))
if quantizer != "no_quant":
kwargs["dimension"] = dimension
return klass(**kwargs)
def get_encodec_autoencoder(encoder_name: str, cfg: omegaconf.DictConfig):
if encoder_name == "seanet":
kwargs = dict_from_config(getattr(cfg, "seanet"))
encoder_override_kwargs = kwargs.pop("encoder")
decoder_override_kwargs = kwargs.pop("decoder")
encoder_kwargs = {**kwargs, **encoder_override_kwargs}
decoder_kwargs = {**kwargs, **decoder_override_kwargs}
encoder = audiocraft.modules.SEANetEncoder(**encoder_kwargs)
decoder = audiocraft.modules.SEANetDecoder(**decoder_kwargs)
return encoder, decoder
else:
raise KeyError(f"Unexpected compression model {cfg.compression_model}")
def get_compression_model(cfg: omegaconf.DictConfig) -> CompressionModel:
"""Instantiate a compression model."""
if cfg.compression_model == "encodec":
kwargs = dict_from_config(getattr(cfg, "encodec"))
encoder_name = kwargs.pop("autoencoder")
quantizer_name = kwargs.pop("quantizer")
encoder, decoder = get_encodec_autoencoder(encoder_name, cfg)
quantizer = get_quantizer(quantizer_name, cfg, encoder.dimension)
frame_rate = kwargs["sample_rate"] // encoder.hop_length
renormalize = kwargs.pop("renormalize", False)
# deprecated params
kwargs.pop("renorm", None)
return EncodecModel(
encoder,
decoder,
quantizer,
frame_rate=frame_rate,
renormalize=renormalize,
**kwargs,
).to(cfg.device)
else:
raise KeyError(f"Unexpected compression model {cfg.compression_model}")
def get_lm_model(cfg: omegaconf.DictConfig) -> LMModel:
"""Instantiate a transformer LM."""
if cfg.lm_model in ["transformer_lm", "transformer_lm_magnet"]:
kwargs = dict_from_config(getattr(cfg, "transformer_lm"))
n_q = kwargs["n_q"]
q_modeling = kwargs.pop("q_modeling", None)
codebooks_pattern_cfg = getattr(cfg, "codebooks_pattern")
attribute_dropout = dict_from_config(getattr(cfg, "attribute_dropout"))
cls_free_guidance = dict_from_config(getattr(cfg, "classifier_free_guidance"))
cfg_prob, cfg_coef = (
cls_free_guidance["training_dropout"],
cls_free_guidance["inference_coef"],
)
fuser = get_condition_fuser(cfg)
condition_provider = get_conditioner_provider(kwargs["dim"], cfg).to(cfg.device)
if len(fuser.fuse2cond["cross"]) > 0: # enforce cross-att programmatically
kwargs["cross_attention"] = True
if codebooks_pattern_cfg.modeling is None:
assert (
q_modeling is not None
), "LM model should either have a codebook pattern defined or transformer_lm.q_modeling"
codebooks_pattern_cfg = omegaconf.OmegaConf.create(
{"modeling": q_modeling, "delay": {"delays": list(range(n_q))}}
)
pattern_provider = get_codebooks_pattern_provider(n_q, codebooks_pattern_cfg)
lm_class = MagnetLMModel if cfg.lm_model == "transformer_lm_magnet" else LMModel
return lm_class(
pattern_provider=pattern_provider,
condition_provider=condition_provider,
fuser=fuser,
cfg_dropout=cfg_prob,
cfg_coef=cfg_coef,
attribute_dropout=attribute_dropout,
dtype=getattr(torch, cfg.dtype),
device=cfg.device,
**kwargs,
).to(cfg.device)
else:
raise KeyError(f"Unexpected LM model {cfg.lm_model}")
def get_conditioner_provider(
output_dim: int, cfg: omegaconf.DictConfig
) -> ConditioningProvider:
"""Instantiate a conditioning model."""
device = cfg.device
duration = cfg.dataset.segment_duration
cfg = getattr(cfg, "conditioners")
dict_cfg = {} if cfg is None else dict_from_config(cfg)
conditioners: tp.Dict[str, BaseConditioner] = {}
condition_provider_args = dict_cfg.pop("args", {})
condition_provider_args.pop("merge_text_conditions_p", None)
condition_provider_args.pop("drop_desc_p", None)
for cond, cond_cfg in dict_cfg.items():
model_type = cond_cfg["model"]
model_args = cond_cfg[model_type]
if model_type == "t5":
conditioners[str(cond)] = T5Conditioner(
output_dim=output_dim, device=device, **model_args
)
elif model_type == "lut":
conditioners[str(cond)] = LUTConditioner(
output_dim=output_dim, **model_args
)
elif model_type == "chroma_stem":
conditioners[str(cond)] = ChromaStemConditioner(
output_dim=output_dim, duration=duration, device=device, **model_args
)
elif model_type == "clap":
conditioners[str(cond)] = CLAPEmbeddingConditioner(
output_dim=output_dim, device=device, **model_args
)
else:
raise ValueError(f"Unrecognized conditioning model: {model_type}")
conditioner = ConditioningProvider(
conditioners, device=device, **condition_provider_args
)
return conditioner
def get_condition_fuser(cfg: omegaconf.DictConfig) -> ConditionFuser:
"""Instantiate a condition fuser object."""
fuser_cfg = getattr(cfg, "fuser")
fuser_methods = ["sum", "cross", "prepend", "input_interpolate"]
fuse2cond = {k: fuser_cfg[k] for k in fuser_methods}
kwargs = {k: v for k, v in fuser_cfg.items() if k not in fuser_methods}
fuser = ConditionFuser(fuse2cond=fuse2cond, **kwargs)
return fuser
def get_codebooks_pattern_provider(
n_q: int, cfg: omegaconf.DictConfig
) -> CodebooksPatternProvider:
"""Instantiate a codebooks pattern provider object."""
pattern_providers = {
"parallel": ParallelPatternProvider,
"delay": DelayedPatternProvider,
"unroll": UnrolledPatternProvider,
"coarse_first": CoarseFirstPattern,
"musiclm": MusicLMPattern,
}
name = cfg.modeling
kwargs = dict_from_config(cfg.get(name)) if hasattr(cfg, name) else {}
klass = pattern_providers[name]
return klass(n_q, **kwargs)
def get_debug_compression_model(device="cpu", sample_rate: int = 32000):
"""Instantiate a debug compression model to be used for unit tests."""
assert sample_rate in [
16000,
32000,
], "unsupported sample rate for debug compression model"
model_ratios = {
16000: [10, 8, 8], # 25 Hz at 16kHz
32000: [10, 8, 16], # 25 Hz at 32kHz
}
ratios: tp.List[int] = model_ratios[sample_rate]
frame_rate = 25
seanet_kwargs: dict = {
"n_filters": 4,
"n_residual_layers": 1,
"dimension": 32,
"ratios": ratios,
}
encoder = audiocraft.modules.SEANetEncoder(**seanet_kwargs)
decoder = audiocraft.modules.SEANetDecoder(**seanet_kwargs)
quantizer = qt.ResidualVectorQuantizer(dimension=32, bins=400, n_q=4)
init_x = torch.randn(8, 32, 128)
quantizer(init_x, 1) # initialize kmeans etc.
compression_model = EncodecModel(
encoder,
decoder,
quantizer,
frame_rate=frame_rate,
sample_rate=sample_rate,
channels=1,
).to(device)
return compression_model.eval()
def get_diffusion_model(cfg: omegaconf.DictConfig):
# TODO Find a way to infer the channels from dset
channels = cfg.channels
num_steps = cfg.schedule.num_steps
return DiffusionUnet(chin=channels, num_steps=num_steps, **cfg.diffusion_unet)
def get_processor(cfg, sample_rate: int = 24000):
sample_processor = SampleProcessor()
if cfg.use:
kw = dict(cfg)
kw.pop("use")
kw.pop("name")
if cfg.name == "multi_band_processor":
sample_processor = MultiBandProcessor(sample_rate=sample_rate, **kw)
return sample_processor
def get_debug_lm_model(device="cpu"):
"""Instantiate a debug LM to be used for unit tests."""
pattern = DelayedPatternProvider(n_q=4)
dim = 16
providers = {
"description": LUTConditioner(
n_bins=128, dim=dim, output_dim=dim, tokenizer="whitespace"
),
}
condition_provider = ConditioningProvider(providers)
fuser = ConditionFuser(
{"cross": ["description"], "prepend": [], "sum": [], "input_interpolate": []}
)
lm = LMModel(
pattern,
condition_provider,
fuser,
n_q=4,
card=400,
dim=dim,
num_heads=4,
custom=True,
num_layers=2,
cross_attention=True,
causal=True,
)
return lm.to(device).eval()
def get_wrapped_compression_model(
compression_model: CompressionModel, cfg: omegaconf.DictConfig
) -> CompressionModel:
if hasattr(cfg, "interleave_stereo_codebooks"):
if cfg.interleave_stereo_codebooks.use:
kwargs = dict_from_config(cfg.interleave_stereo_codebooks)
kwargs.pop("use")
compression_model = InterleaveStereoCompressionModel(
compression_model, **kwargs
)
if hasattr(cfg, "compression_model_n_q"):
if cfg.compression_model_n_q is not None:
compression_model.set_num_codebooks(cfg.compression_model_n_q)
return compression_model
def get_watermark_model(cfg: omegaconf.DictConfig) -> WMModel:
"""Build a WMModel based by audioseal. This requires audioseal to be installed"""
import audioseal
from .watermark import AudioSeal
# Builder encoder and decoder directly using audiocraft API to avoid cyclic import
assert hasattr(
cfg, "seanet"
), "Missing required `seanet` parameters in AudioSeal config"
encoder, decoder = get_encodec_autoencoder("seanet", cfg)
# Build message processor
kwargs = (
dict_from_config(getattr(cfg, "audioseal")) if hasattr(cfg, "audioseal") else {}
)
nbits = kwargs.get("nbits", 0)
hidden_size = getattr(cfg.seanet, "dimension", 128)
msg_processor = audioseal.MsgProcessor(nbits, hidden_size=hidden_size)
# Build detector using audioseal API
def _get_audioseal_detector():
# We don't need encoder and decoder params from seanet, remove them
seanet_cfg = dict_from_config(cfg.seanet)
seanet_cfg.pop("encoder")
seanet_cfg.pop("decoder")
detector_cfg = dict_from_config(cfg.detector)
typed_seanet_cfg = audioseal.builder.SEANetConfig(**seanet_cfg)
typed_detector_cfg = audioseal.builder.DetectorConfig(**detector_cfg)
_cfg = audioseal.builder.AudioSealDetectorConfig(
nbits=nbits, seanet=typed_seanet_cfg, detector=typed_detector_cfg
)
return audioseal.builder.create_detector(_cfg)
detector = _get_audioseal_detector()
generator = audioseal.AudioSealWM(
encoder=encoder, decoder=decoder, msg_processor=msg_processor
)
model = AudioSeal(generator=generator, detector=detector, nbits=nbits)
device = torch.device(getattr(cfg, "device", "cpu"))
dtype = getattr(torch, getattr(cfg, "dtype", "float32"))
return model.to(device=device, dtype=dtype)
|