Spaces:
Runtime error
Runtime error
File size: 4,121 Bytes
4d0b7ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
"""
reference: https://github.com/xuebinqin/DIS
"""
import PIL.Image
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from torch import nn
from torch.autograd import Variable
from torchvision import transforms
from torchvision.transforms.functional import normalize
from .models import ISNetDIS
# Helpers
device = 'cuda' if torch.cuda.is_available() else 'cpu'
class GOSNormalize(object):
"""
Normalize the Image using torch.transforms
"""
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
self.mean = mean
self.std = std
def __call__(self, image):
image = normalize(image, self.mean, self.std)
return image
def im_preprocess(im, size):
if len(im.shape) < 3:
im = im[:, :, np.newaxis]
if im.shape[2] == 1:
im = np.repeat(im, 3, axis=2)
im_tensor = torch.tensor(im.copy(), dtype=torch.float32)
im_tensor = torch.transpose(torch.transpose(im_tensor, 1, 2), 0, 1)
if len(size) < 2:
return im_tensor, im.shape[0:2]
else:
im_tensor = torch.unsqueeze(im_tensor, 0)
im_tensor = F.upsample(im_tensor, size, mode="bilinear")
im_tensor = torch.squeeze(im_tensor, 0)
return im_tensor.type(torch.uint8), im.shape[0:2]
class IsNetPipeLine:
def __init__(self, model_path=None, model_digit="full"):
self.model_digit = model_digit
self.model = ISNetDIS()
self.cache_size = [1024, 1024]
self.transform = transforms.Compose([
GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
])
# Build Model
self.build_model(model_path)
def load_image(self, image: PIL.Image.Image):
im = np.array(image.convert("RGB"))
im, im_shp = im_preprocess(im, self.cache_size)
im = torch.divide(im, 255.0)
shape = torch.from_numpy(np.array(im_shp))
return self.transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape
def build_model(self, model_path=None):
if model_path is not None:
self.model.load_state_dict(torch.load(model_path, map_location=device))
# convert to half precision
if self.model_digit == "half":
self.model.half()
for layer in self.model.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
self.model.to(device)
self.model.eval()
def __call__(self, image: PIL.Image.Image):
image_tensor, orig_size = self.load_image(image)
mask = self.predict(image_tensor, orig_size)
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = image.convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
return [im_rgba, pil_mask]
def predict(self, inputs_val: torch.Tensor, shapes_val):
"""
Given an Image, predict the mask
"""
if self.model_digit == "full":
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable
ds_val = self.model(inputs_val_v)[0] # list of 6 results
# B x 1 x H x W # we want the first one which is the most accurate prediction
pred_val = ds_val[0][0, :, :, :]
# recover the prediction spatial size to the orignal image size
pred_val = torch.squeeze(
F.upsample(torch.unsqueeze(pred_val, 0), (shapes_val[0][0], shapes_val[0][1]), mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val - mi) / (ma - mi) # max = 1
if device == 'cuda':
torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8) # it is the mask we need
# a = IsNetPipeLine(model_path="save_models/isnet.pth")
# input_image = Image.open("image_0mx.png")
# rgb, mask = a(input_image)
#
# rgb.save("rgb.png")
# mask.save("mask.png") |