Spaces:
Configuration error
Configuration error
Uploading food not food text classifier demo app
Browse files- README.md +0 -12
- __pycache__/constants.cpython-310.pyc +0 -0
- __pycache__/utility.cpython-310.pyc +0 -0
- app.py +23 -0
- app_utility.py +87 -0
- constants.py +2 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,12 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: Food Not Food Text Classifier App
|
3 |
-
emoji: 📉
|
4 |
-
colorFrom: yellow
|
5 |
-
colorTo: yellow
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.44.1
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__pycache__/constants.cpython-310.pyc
ADDED
Binary file (317 Bytes). View file
|
|
__pycache__/utility.cpython-310.pyc
ADDED
Binary file (2.6 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from demos.food_not_food_text_classifier.app_utility import gradio_food_classifier
|
4 |
+
|
5 |
+
description = """
|
6 |
+
A text classifier to determine if a sentence is about food or not food.
|
7 |
+
|
8 |
+
Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food text](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions).
|
9 |
+
|
10 |
+
See [source code](https://github.com/mrdbourke/learn-huggingface/blob/main/notebooks/hugging_face_text_classification_tutorial.ipynb).
|
11 |
+
"""
|
12 |
+
|
13 |
+
demo = gr.Interface(fn=gradio_food_classifier,
|
14 |
+
inputs="text",
|
15 |
+
outputs=gr.Label(num_top_classes=2),
|
16 |
+
title="🍗🚫🥑 Food or Not Food Text Classifier App",
|
17 |
+
description=description,
|
18 |
+
examples=[["I whipped up a fresh batch of code, but it seems to have a syntax error."],
|
19 |
+
["A delicious photo of a plate of scrambled eggs, bacon and toast."]])
|
20 |
+
|
21 |
+
|
22 |
+
if __name__ == "__main__":
|
23 |
+
demo.launch()
|
app_utility.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Union,Dict
|
3 |
+
from transformers import pipeline
|
4 |
+
from constants import HUGGINGFACE_MODEL_PATH
|
5 |
+
|
6 |
+
|
7 |
+
def set_device() -> torch.device:
|
8 |
+
"""
|
9 |
+
Set the device to the best available option: CUDA (if available), MPS (if available on Mac),
|
10 |
+
or CPU as a fallback. Provides a robust selection mechanism for production environments.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
torch.device: The best available device for computation.
|
14 |
+
"""
|
15 |
+
if torch.cuda.is_available():
|
16 |
+
return torch.device("cuda")
|
17 |
+
elif torch.backends.mps.is_available() and torch.backends.mps.is_built():
|
18 |
+
return torch.device("mps")
|
19 |
+
else:
|
20 |
+
return torch.device("cpu")
|
21 |
+
|
22 |
+
|
23 |
+
def food_not_food_classifier(
|
24 |
+
text: Union[str, list],
|
25 |
+
model_path: str,
|
26 |
+
batch_size: int = 32,
|
27 |
+
device: str = None,
|
28 |
+
get_classifier:bool = False
|
29 |
+
) -> Dict[str, float]:
|
30 |
+
"""
|
31 |
+
Classifies whether the given text is related to food or not, returning a dictionary of labels and their scores.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
text (Union[str, list]): The input text or list of texts to classify.
|
35 |
+
model_path (str): The path to the Hugging Face model for classification.
|
36 |
+
batch_size (int): The batch size for processing. Default is 32.
|
37 |
+
device (str): The device to run inference on (e.g., 'cuda', 'cpu'). Default is None (auto-detect best available).
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
Dict[str, float]: A dictionary where the keys are the labels and the values are the classification scores.
|
41 |
+
"""
|
42 |
+
|
43 |
+
if device is None:
|
44 |
+
device = set_device()
|
45 |
+
|
46 |
+
classifier = pipeline(
|
47 |
+
task="text-classification",
|
48 |
+
model=model_path,
|
49 |
+
batch_size=batch_size,
|
50 |
+
device=device,
|
51 |
+
top_k=None # Keep all predictions
|
52 |
+
)
|
53 |
+
|
54 |
+
if get_classifier:
|
55 |
+
return classifier
|
56 |
+
else:
|
57 |
+
|
58 |
+
results = classifier(text) # [[{'label': 'food', 'score': 0.9500328898429871}, {'label': 'not_food', 'score': 0.04996709153056145}]]
|
59 |
+
|
60 |
+
output_dict = {}
|
61 |
+
for output in results[0]:
|
62 |
+
output_dict[output['label']] = output['score']
|
63 |
+
|
64 |
+
return output_dict
|
65 |
+
|
66 |
+
|
67 |
+
def gradio_food_classifier(text: str) -> dict:
|
68 |
+
"""
|
69 |
+
A wrapper function for Gradio to classify text using the classify_food_text function.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
text (str): The input text to classify.
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
dict: Classification results as a dictionary of label and score.
|
76 |
+
"""
|
77 |
+
classifier = food_not_food_classifier(text=text,
|
78 |
+
model_path=HUGGINGFACE_MODEL_PATH,
|
79 |
+
get_classifier=True)
|
80 |
+
|
81 |
+
results = classifier(text)
|
82 |
+
|
83 |
+
output_dict = {}
|
84 |
+
for output in results[0]:
|
85 |
+
output_dict[output['label']] = output['score']
|
86 |
+
|
87 |
+
return output_dict
|
constants.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
HUGGINGFACE_MODEL_PATH = "Suraj-Yadav/learn_hf_food_not_food_text_classifier-distilbert-base-uncased"
|
2 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
transformers
|