Spaces:
Runtime error
Runtime error
from fastapi import FastAPI | |
from transformers import LineByLineTextDataset | |
from transformers import DataCollatorForLanguageModeling | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
from transformers import Trainer, TrainingArguments | |
from fastapi.middleware.cors import CORSMiddleware | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
def load_model(model_path): | |
model = GPT2LMHeadModel.from_pretrained(model_path) | |
return model | |
def load_tokenizer(checkpoint): | |
tokenizer = GPT2Tokenizer.from_pretrained(checkpoint) | |
return tokenizer | |
model_path = r'./checkpoint/' | |
model = load_model(model_path) | |
tokenizer = load_tokenizer('./tokenizer/') | |
def generate_text(sequence, max_new_tokens): | |
ids = tokenizer.encode(f'{sequence}', return_tensors='pt') | |
input_length = ids.size(1) | |
max_length = input_length + max_new_tokens | |
final_outputs = model.generate( | |
ids, | |
do_sample=True, | |
max_length=max_length, | |
pad_token_id=model.config.eos_token_id | |
) | |
return tokenizer.decode(final_outputs[0], skip_special_tokens=True) | |
async def root(prompt: str): | |
print(prompt) | |
return {"subject": generate_text("Email : " + prompt + " Subject : ", 7).split('Subject : ')[1]} | |