import os from pathlib import Path import numpy as np import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer current_path = os.path.dirname(os.path.abspath(__file__)) tokenizer_path = os.path.join(current_path, "gpt_tokenizer") model_path = os.path.join(current_path, "gpt2_qa_model") tokenizer = GPT2Tokenizer.from_pretrained(tokenizer_path) # also try gpt2-medium model = GPT2LMHeadModel.from_pretrained(model_path) def generate_text(sequence, max_new_tokens): ids = tokenizer.encode(f'{sequence}', return_tensors='pt') input_length = ids.size(1) max_length = input_length + max_new_tokens final_outputs = model.generate( ids, do_sample=True, max_length=max_length, pad_token_id=model.config.eos_token_id ) return tokenizer.decode(final_outputs[0], skip_special_tokens=True) def question_awnser(prompt: str): result = generate_text("Question: " + prompt + "Answer: ", 35).split('Answer: ')[1] try: result = result.split('.')[0] + '.' except Exception as e: print(e) return result