|
import asyncio |
|
import torch |
|
from datetime import datetime |
|
from services.model_visitor import ModelVisitor |
|
from utils.logger import Logger |
|
|
|
logger = Logger.get_logger(__name__) |
|
|
|
|
|
class IbmTextGenerator(ModelVisitor): |
|
|
|
async def visit(self, model_generator, input_text, max_length_per_chunk=50): |
|
return await self._generate_text(model_generator, input_text, max_length_per_chunk) |
|
|
|
async def _generate_text_chunk(self, model_generator, input_ids, max_length_per_chunk): |
|
with torch.no_grad(): |
|
outputs = await asyncio.to_thread(model_generator.model.generate, input_ids, max_new_tokens=max_length_per_chunk) |
|
continuation = model_generator.tokenizer.decode( |
|
outputs[0], skip_special_tokens=False) |
|
|
|
logger.info('Chunk generated: {}'.format(continuation)) |
|
|
|
return continuation |
|
|
|
async def _generate_text(self, model_generator, input_text, max_length_per_chunk): |
|
""" |
|
Generates the text based on input provided |
|
Args: |
|
input_text (str): The input string containing text blocks. |
|
max_length_per_chunk: Max length per chunk (Default: 50 / Optional) |
|
""" |
|
try: |
|
start_time = datetime.now() |
|
|
|
logger.info('Started at: {}'.format( |
|
start_time.strftime(model_generator._format_data_time))) |
|
|
|
input_ids = model_generator.tokenizer.encode( |
|
input_text, return_tensors='pt').to(model_generator.device) |
|
|
|
output_text = input_text |
|
while True: |
|
continuation = await self._generate_text_chunk( |
|
model_generator, input_ids, max_length_per_chunk) |
|
|
|
new_text = continuation[len(model_generator.tokenizer.decode( |
|
input_ids[0], skip_special_tokens=False)):] |
|
output_text += new_text |
|
input_ids = model_generator.tokenizer.encode( |
|
output_text, return_tensors='pt').to(model_generator.device) |
|
if "<|endoftext|>" in new_text or new_text.count('```') > 1: |
|
break |
|
|
|
end_time = datetime.now() |
|
|
|
logger.info('Output generated at: {}'.format( |
|
end_time.strftime(model_generator._format_data_time))) |
|
|
|
logger.info('Time taken: {}'.format(end_time - start_time)) |
|
|
|
return output_text |
|
except asyncio.CancelledError: |
|
logger.error( |
|
'Cancelling model generation due to disconnection in network.') |
|
return "" |
|
|