|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from utils.config import Config |
|
from utils.logger import Logger |
|
|
|
logger = Logger.get_logger(__name__) |
|
|
|
|
|
class ModelGenerator: |
|
""" |
|
Singleton class responsible for generating text using a specified language model. |
|
|
|
This class initializes a language model and tokenizer, and provides methods |
|
to generate text and extract code blocks from generated text. |
|
|
|
Attributes: |
|
device (torch.device): Device to run the model on (CPU or GPU). |
|
model (AutoModelForCausalLM): Language model for text generation. |
|
tokenizer (AutoTokenizer): Tokenizer corresponding to the language model. |
|
|
|
Methods: |
|
acceptTextGenerator(self, visitor, *args, **kwargs): |
|
Accepts a visitor to generates text based on the input provided with the model generator. |
|
acceptExtractCodeBlock(self, visitor, *args, **kwargs): |
|
Accepts a visitor to extract code blocks from the output text. |
|
""" |
|
_instance = None |
|
_format_data_time = "%Y-%m-%d %H:%M:%S" |
|
|
|
def __new__(cls, model_name=Config.read('app', 'model')): |
|
if cls._instance is None: |
|
cls._instance = super(ModelGenerator, cls).__new__(cls) |
|
cls._instance._initialize(model_name) |
|
return cls._instance |
|
|
|
def _initialize(self, model_name): |
|
self.device = torch.device( |
|
"cuda" if torch.cuda.is_available() else "cpu") |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
model_name).to(self.device) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
def acceptTextGenerator(self, visitor, *args, **kwargs): |
|
return visitor.visit(self, *args, **kwargs) |
|
|
|
def acceptExtractCodeBlock(self, visitor, *args, **kwargs): |
|
return visitor.visit(self, *args, **kwargs) |
|
|