Spaces:
Runtime error
Runtime error
File size: 3,963 Bytes
6d1ceea aa5f6cb 6d1ceea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import streamlit as st
import time
from datetime import datetime
from transformers import SpeechT5Processor, SpeechT5ForSpeechToSpeech, SpeechT5HifiGan,SpeechT5ForTextToSpeech
import numpy as np
import torch
from io import StringIO
import soundfile as sf
html_temp= """
<div style="background-color:tomato;padding:10px">
<h2 style="color:white;text-align:centre;"> Text-to-Speech </h2>
</div>
"""
st.markdown(html_temp,unsafe_allow_html=True)
st.markdown(
"""
This is an AI tool. This tool will convert your text into audio. You can also drop you text file here and download the audio file.
"""
)
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
speaker_embeddings = np.load("cmu_us_slt_arctic-wav-arctic_a0499.npy")
speaker_embeddings = torch.tensor(speaker_embeddings).unsqueeze(0)
text = st.text_area("Type your text..")
st.button("Convert")
inputs = processor(text=text, return_tensors="pt")
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
with torch.no_grad():
speech = vocoder(spectrogram)
sf.write("speech.wav", speech.numpy(), samplerate=16000)
audio_file = open('speech.wav', 'rb')
audio_bytes = audio_file.read()
st.audio(audio_bytes, format='audio/wav')
uploaded_file=st.file_uploader("Upload your text file here",type=['txt'] )
if uploaded_file is not None:
stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
#To read file as string:
text = stringio.read()
st.write(text)
st.button("Convert",key=1)
inputs = processor(text=text, return_tensors="pt")
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
with torch.no_grad():
speech = vocoder(spectrogram)
sf.write("speech.wav", speech.numpy(), samplerate=16000)
audio_file = open('speech.wav', 'rb')
audio_bytes = audio_file.read()
st.audio(audio_bytes, format='audio/wav')
st.text("Thanks for using")
if st.button("About"):
st.text("Created by Surendra Kumar")
## footer
from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts
from htbuilder.units import percent, px
from htbuilder.funcs import rgba, rgb
def image(src_as_string, **style):
return img(src=src_as_string, style=styles(**style))
def link(link, text, **style):
return a(_href=link, _target="_blank", style=styles(**style))(text)
def layout(*args):
style = """
<style>
# MainMenu {visibility: hidden;}
footer {visibility: hidden;}
.stApp { bottom: 105px; }
</style>
"""
style_div = styles(
position="fixed",
left=0,
bottom=0,
margin=px(0, 0, 0, 0),
width=percent(100),
color="black",
text_align="center",
height="auto",
opacity=1
)
style_hr = styles(
display="block",
margin=px(8, 8, "auto", "auto"),
border_style="solid",
border_width=px(0.5)
)
body = p()
foot = div(
style=style_div
)(
hr(
style=style_hr
),
body
)
st.markdown(style,unsafe_allow_html=True)
for arg in args:
if isinstance(arg, str):
body(arg)
elif isinstance(arg, HtmlElement):
body(arg)
st.markdown(str(foot), unsafe_allow_html=True)
def footer():
myargs = [
"©️ surendraKumar",
br(),
link("https://www.linkedin.com/in/surendra-kumar-51802022b", image('https://icons.getbootstrap.com/assets/icons/linkedin.svg') ),
br(),
link("https://www.instagram.com/im_surendra_dhaka/",image('https://icons.getbootstrap.com/assets/icons/instagram.svg')),
]
layout(*myargs)
if __name__ == "__main__":
footer()
|