Spaces:
Sleeping
Sleeping
File size: 9,398 Bytes
c318a73 6a24aec 4336e0a 6a24aec 48860c6 4336e0a 48860c6 c318a73 48860c6 c318a73 48860c6 a99ae87 48860c6 c318a73 48860c6 c318a73 6a24aec 061e8b0 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec c318a73 48860c6 061e8b0 48860c6 061e8b0 c318a73 48860c6 c318a73 6a24aec 48860c6 c318a73 48860c6 6a24aec 48860c6 6a24aec c318a73 6a24aec 48860c6 9e2a478 48860c6 c318a73 48860c6 3e1d74a 48860c6 c318a73 48860c6 6a24aec 48860c6 4336e0a 48860c6 4336e0a 48860c6 4336e0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import time
from pathlib import Path
from tempfile import NamedTemporaryFile
import basic_pitch
import basic_pitch.inference
import gradio as gr
import torch
from audiocraft.data.audio import audio_write
from audiocraft.data.audio_utils import convert_audio
from audiocraft.models import AudioGen, MusicGen, MAGNeT
from basic_pitch import ICASSP_2022_MODEL_PATH
# from transformers import AutoModelForSeq2SeqLM
from concurrent.futures import ProcessPoolExecutor
import typing as tp
import warnings
import json
import ast
import torchaudio
MODEL = None
def load_model(version='facebook/musicgen-large'):
global MODEL
if MODEL is None or MODEL.name != version:
del MODEL
MODEL = None # in case loading would crash
print("Loading model", version)
if "magnet" in version:
MODEL = MAGNeT.get_pretrained(version)
elif "musicgen" in version:
MODEL = MusicGen.get_pretrained(version)
elif "musiclang" in version:
# TODO: Implement MusicLang
pass
elif "audiogen" in version:
MODEL = AudioGen.get_pretrained(version)
else:
raise ValueError("Invalid model version")
return MODEL
pool = ProcessPoolExecutor(4)
class FileCleaner:
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = []
def add(self, path: tp.Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
path.unlink()
self.files.pop(0)
else:
break
file_cleaner = FileCleaner()
def inference_musicgen_text_to_music(model, configs, text, num_outputs=1):
model.set_generation_params(
**configs
)
descriptions = [text for _ in range(num_outputs)]
output = model.generate(descriptions=descriptions ,progress=True, return_tokens=False)
return output
def inference_musicgen_continuation(model, configs, text, prompt_waveform, prompt_sr, num_outputs=1):
model.set_generation_params(
**configs
)
# melody, prompt_sr = torchaudio.load(prompt_waveform)
# descriptions = [text for _ in range(num_outputs)]
# prompt = [prompt_waveform for _ in range(num_outputs)]
output = model.generate_continuation(prompt_waveform, prompt_sample_rate=prompt_sr, progress=True, return_tokens=False)
return output
def inference_musicgen_melody_condition(model, configs, text, prompt_waveform, prompt_sr, num_outputs=1):
model.set_generation_params(**configs)
descriptions = [text for _ in range(num_outputs)]
output = model.generate_with_chroma(
descriptions=descriptions,
melody_wavs=prompt_waveform,
melody_sample_rate=prompt_sr,
progress=True,
return_tokens=False
)
return output
def inference_magnet(model, configs, text, num_outputs=1):
model.set_generation_params(
**configs
)
descriptions = [text for _ in range(num_outputs)]
output = model.generate(descriptions=descriptions, progress=True, return_tokens=False)
return output
def inference_magnet_audio(model, configs, text, num_outputs=1):
model.set_generation_params(
**configs
)
descriptions = [text for _ in range(num_outputs)]
output = model.generate(descriptions=descriptions, progress=True, return_tokens=False)
return output
def inference_audiogen(model, configs, text, num_outputs=1):
model.set_generation_params(
**configs
)
descriptions = [text for _ in range(num_outputs)]
output = model.generate(descriptions=descriptions, progress=True, return_tokens=False)
return output
def inference_musiclang():
# TODO: Implement MusicLang
pass
def process_audio(gr_audio, prompt_duration, model):
# audio, sr = torch.from_numpy(gr_audio[1]).to(model.device).float().t(), gr_audio[0]
audio, sr = torchaudio.load(gr_audio)
audio = audio[..., :int(prompt_duration * sr)]
return audio, sr
_MODEL_INFERENCES = {
"facebook/musicgen-small": inference_musicgen_text_to_music,
"facebook/musicgen-medium": inference_musicgen_text_to_music,
"facebook/musicgen-large": inference_musicgen_text_to_music,
"facebook/musicgen-melody": inference_musicgen_melody_condition,
"facebook/musicgen-melody-large": inference_musicgen_melody_condition,
"facebook/magnet-small-10secs": inference_magnet,
"facebook/magnet-medium-10secs": inference_magnet,
"facebook/magnet-small-30secs": inference_magnet,
"facebook/magnet-medium-30secs": inference_magnet,
"facebook/audio-magnet-small": inference_magnet_audio,
"facebook/audio-magnet-medium": inference_magnet_audio,
"facebook/audiogen-medium": inference_audiogen,
"musicgen-continuation": inference_musicgen_continuation,
}
def _do_predictions(
model_file,
model,
text,
melody = None,
mel_sample_rate=None,
progress=False,
num_generations=1,
**gen_kwargs,
):
print(
"new generation",
text,
None if melody is None else melody.shape
)
be = time.time()
try:
if melody is not None:
# melody condition or continuation
if 'melody' in model_file:
# melody condition - musicgen-melody, musicgen-melody-large
inderence_func = _MODEL_INFERENCES[model_file]
else:
# melody continuation
inderence_func = _MODEL_INFERENCES['musicgen-continuation']
outputs = inderence_func(model, gen_kwargs, text, melody, mel_sample_rate, num_generations)
else:
# text-to-music, text-to-sound
inderence_func = _MODEL_INFERENCES[model_file]
outputs = inderence_func(model, gen_kwargs, text, num_generations)
except RuntimeError as e:
raise gr.Error("Error while generating " + e.args[0])
outputs = outputs.detach().cpu().float()
out_audios = []
video_processes = []
for output in outputs:
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(
file.name,
output,
model.sample_rate,
strategy="loudness",
loudness_headroom_db=16,
loudness_compressor=True,
add_suffix=False,
)
# video_processes.append(pool.submit(make_waveform, file.name))
out_audios.append(file.name)
file_cleaner.add(file.name)
# out_videos = [video.result() for video in video_processes]
# for video in out_videos:
# file_cleaner.add(video)
print("generation finished", len(outputs), time.time() - be)
return out_audios
def make_waveform(*args, **kwargs):
# Further remove some warnings.
be = time.time()
with warnings.catch_warnings():
warnings.simplefilter('ignore')
out = gr.make_waveform(*args, **kwargs)
print("Make a video took", time.time() - be)
return out
def predict(
model_version,
generation_configs,
prompt_text=None,
prompt_wav=None,
num_generations=1,
progress=gr.Progress(),
):
global INTERRUPTING
INTERRUPTING = False
progress(0, desc="Loading model...")
def _progress(generated, to_generate):
nonlocal max_generated
max_generated = max(generated, max_generated)
progress((min(max_generated, to_generate), to_generate))
if INTERRUPTING:
raise gr.Error("Interrupted.")
model = load_model(model_version)
model.set_custom_progress_callback(_progress)
if isinstance(generation_configs, str):
generation_configs = ast.literal_eval(generation_configs)
max_generated = 0
if prompt_wav is not None:
melody, mel_sample_rate = process_audio(prompt_wav, generation_configs['duration'], model)
else:
melody, mel_sample_rate = None, None
audios = _do_predictions(
model_version,
model,
prompt_text,
melody,
mel_sample_rate,
progress=True,
num_generations = num_generations,
**generation_configs,
)
return audios
def transcribe(audio_path):
"""
Transcribe an audio file to MIDI using the basic_pitch model.
"""
# model_output, midi_data, note_events = predict("generated_0.wav")
tmp_paths = ast.literal_eval(audio_path)
download_buttons = []
for audio_path in tmp_paths:
model_output, midi_data, note_events = basic_pitch.inference.predict(
audio_path=audio_path,
model_or_model_path=ICASSP_2022_MODEL_PATH,
)
with NamedTemporaryFile("wb", suffix=".mid", delete=False) as file:
try:
midi_data.write(file)
print(f"midi file saved to {file.name}")
except Exception as e:
print(f"Error while writing midi file: {e}")
raise e
download_buttons.append(gr.DownloadButton(
value=file.name, label=f"Download MIDI file {file.name}", visible=True
))
file_cleaner.add(file.name)
return download_buttons
|