Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
import torch
|
7 |
+
import torchvision.transforms as transforms
|
8 |
+
from transformers import pipeline
|
9 |
+
|
10 |
+
# Load the DeepVTO model from Hugging Face
|
11 |
+
deepvto_pipeline = pipeline("image-to-image", model="huggingface/deepvto")
|
12 |
+
|
13 |
+
# Load sample product data
|
14 |
+
product_data = pd.DataFrame({
|
15 |
+
'Product': ['Dress 1', 'Dress 2', 'Dress 3'],
|
16 |
+
'Size': ['S', 'M', 'L'],
|
17 |
+
'Color': ['Red', 'Blue', 'Green'],
|
18 |
+
'Image': ['sample_dress1.jpg', 'sample_dress2.jpg', 'sample_dress3.jpg']
|
19 |
+
})
|
20 |
+
|
21 |
+
def process_image(image, product):
|
22 |
+
# Convert the uploaded image to a PIL image
|
23 |
+
person_image = Image.fromarray(image).convert("RGB")
|
24 |
+
|
25 |
+
# Fetch the garment image corresponding to the selected product
|
26 |
+
garment_filename = product_data[product_data['Product'] == product]['Image'].values[0]
|
27 |
+
garment_path = os.path.join(os.getcwd(), garment_filename)
|
28 |
+
|
29 |
+
if not os.path.exists(garment_path):
|
30 |
+
raise FileNotFoundError(f"File not found: {garment_path}")
|
31 |
+
|
32 |
+
garment_image = Image.open(garment_path).convert("RGB")
|
33 |
+
|
34 |
+
# Convert images to the format required by the model
|
35 |
+
person_image_tensor = transforms.ToTensor()(person_image).unsqueeze(0)
|
36 |
+
garment_image_tensor = transforms.ToTensor()(garment_image).unsqueeze(0)
|
37 |
+
|
38 |
+
# Run the DeepVTO model
|
39 |
+
with torch.no_grad():
|
40 |
+
output = deepvto_pipeline(person_image_tensor, garment_image_tensor)
|
41 |
+
|
42 |
+
# Convert the output to a PIL image
|
43 |
+
output_image = transforms.ToPILImage()(output[0])
|
44 |
+
|
45 |
+
# Convert to numpy array for Gradio
|
46 |
+
result_array = np.array(output_image)
|
47 |
+
|
48 |
+
# Fetch product details
|
49 |
+
product_details = product_data[product_data['Product'] == product].iloc[0].to_dict()
|
50 |
+
|
51 |
+
return result_array, product_details
|
52 |
+
|
53 |
+
# Gradio interface
|
54 |
+
iface = gr.Interface(
|
55 |
+
fn=process_image,
|
56 |
+
inputs=[
|
57 |
+
gr.Image(type="numpy", label="Upload Your Image"),
|
58 |
+
gr.Dropdown(choices=product_data['Product'].tolist(), label="Select Product")
|
59 |
+
],
|
60 |
+
outputs=[
|
61 |
+
gr.Image(type="numpy", label="Output Image"),
|
62 |
+
gr.JSON(label="Product Details")
|
63 |
+
],
|
64 |
+
title="Virtual Dress Fitting",
|
65 |
+
description="Upload an image and select a product to see how it fits on you."
|
66 |
+
)
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
iface.launch()
|