diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000000000000000000000000000000000000..1bf611e228e20dd94e5f12d072fd7bb2f78ef9b3 --- /dev/null +++ b/.gitattributes @@ -0,0 +1,74 @@ +*.7z filter=lfs diff=lfs merge=lfs -text +*.arrow filter=lfs diff=lfs merge=lfs -text +*.bin filter=lfs diff=lfs merge=lfs -text +*.bz2 filter=lfs diff=lfs merge=lfs -text +*.ckpt filter=lfs diff=lfs merge=lfs -text +*.ftz filter=lfs diff=lfs merge=lfs -text +*.gz filter=lfs diff=lfs merge=lfs -text +*.h5 filter=lfs diff=lfs merge=lfs -text +*.joblib filter=lfs diff=lfs merge=lfs -text +*.lfs.* filter=lfs diff=lfs merge=lfs -text +*.mlmodel filter=lfs diff=lfs merge=lfs -text +*.model filter=lfs diff=lfs merge=lfs -text +*.msgpack filter=lfs diff=lfs merge=lfs -text +*.npy filter=lfs diff=lfs merge=lfs -text +*.npz filter=lfs diff=lfs merge=lfs -text +*.onnx filter=lfs diff=lfs merge=lfs -text +*.ot filter=lfs diff=lfs merge=lfs -text +*.parquet filter=lfs diff=lfs merge=lfs -text +*.pb filter=lfs diff=lfs merge=lfs -text +*.pickle filter=lfs diff=lfs merge=lfs -text +*.pkl filter=lfs diff=lfs merge=lfs -text +*.pt filter=lfs diff=lfs merge=lfs -text +*.pth filter=lfs diff=lfs merge=lfs -text +*.rar filter=lfs diff=lfs merge=lfs -text +*.safetensors filter=lfs diff=lfs merge=lfs -text +saved_model/**/* filter=lfs diff=lfs merge=lfs -text +*.tar.* filter=lfs diff=lfs merge=lfs -text +*.tflite filter=lfs diff=lfs merge=lfs -text +*.tgz filter=lfs diff=lfs merge=lfs -text +*.wasm filter=lfs diff=lfs merge=lfs -text +*.xz filter=lfs diff=lfs merge=lfs -text +*.zip filter=lfs diff=lfs merge=lfs -text +*.zst filter=lfs diff=lfs merge=lfs -text +*tfevents* filter=lfs diff=lfs merge=lfs -text +weights/alice/added_IVF141_Flat_nprobe_4.index filter=lfs diff=lfs merge=lfs -text +weights/ayaka-jp/added_IVF1830_Flat_nprobe_9.index filter=lfs diff=lfs merge=lfs -text +weights/nilou-zh/added_IVF1939_Flat_nprobe_9.index filter=lfs diff=lfs merge=lfs -text +weights/teio/added_IVF3421_Flat_nprobe_11.index filter=lfs diff=lfs merge=lfs -text +weights/ayaka-jp/added_IVF415_Flat_nprobe_6.index filter=lfs diff=lfs merge=lfs -text +weights/klee-jp/added_IVF282_Flat_nprobe_5.index filter=lfs diff=lfs merge=lfs -text +weights/klee-jp/cover.png filter=lfs diff=lfs merge=lfs -text +weights/nahida-jp/added_IVF265_Flat_nprobe_5.index filter=lfs diff=lfs merge=lfs -text +weights/nahida-jp/cover.png filter=lfs diff=lfs merge=lfs -text +weights/hutao-jp/added_IVF265_Flat_nprobe_5.index filter=lfs diff=lfs merge=lfs -text +weights/hutao-jp/cover.png filter=lfs diff=lfs merge=lfs -text +weights/raiden-jp/added_IVF783_Flat_nprobe_7.index filter=lfs diff=lfs merge=lfs -text +weights/raiden-jp/cover.png filter=lfs diff=lfs merge=lfs -text +weights/kazuha-jp/added_IVF677_Flat_nprobe_7.index filter=lfs diff=lfs merge=lfs -text +weights/kazuha-jp/cover.png filter=lfs diff=lfs merge=lfs -text +weights/childe-jp/added_IVF428_Flat_nprobe_6.index filter=lfs diff=lfs merge=lfs -text +weights/childe-jp/cover.png filter=lfs diff=lfs merge=lfs -text +weights/noah/added_IVF467_Flat_nprobe_6.index filter=lfs diff=lfs merge=lfs -text +weights/noah/cover.jpeg filter=lfs diff=lfs merge=lfs -text +weights/rie/added_IVF325_Flat_nprobe_5.index filter=lfs diff=lfs merge=lfs -text +weights/rie/cover.png filter=lfs diff=lfs merge=lfs -text +weights/wanderer-jp/added_IVF128_Flat_nprobe_4.index filter=lfs diff=lfs merge=lfs -text +weights/wanderer-jp/cover.png filter=lfs diff=lfs merge=lfs -text +weights/xiao-jp/cover.png filter=lfs diff=lfs merge=lfs -text +weights/xiao-jp/added_IVF233_Flat_nprobe_5.index filter=lfs diff=lfs merge=lfs -text +weights/anji/added_IVF198_Flat_nprobe_4.index filter=lfs diff=lfs merge=lfs -text +weights/anji/cover.png filter=lfs diff=lfs merge=lfs -text +weights/ariana/added_IVF133_Flat_nprobe_4.index filter=lfs diff=lfs merge=lfs -text +weights/ariana/cover.png filter=lfs diff=lfs merge=lfs -text +weights/once/added_IVF229_Flat_nprobe_5.index filter=lfs diff=lfs merge=lfs -text +weights/once/cover.png filter=lfs diff=lfs merge=lfs -text +weights/ibam/cover.jpeg filter=lfs diff=lfs merge=lfs -text +weights/ibam/added_IVF243_Flat_nprobe_5.index filter=lfs diff=lfs merge=lfs -text +weights/marel/cover.jpg filter=lfs diff=lfs merge=lfs -text +weights/marel/added_IVF418_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text +weights/aerith/cover.jpg filter=lfs diff=lfs merge=lfs -text +weights/aerith/trained_IVF3933_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text +weights/yae-jp/cover.png filter=lfs diff=lfs merge=lfs -text +weights/yae-jp/trained_IVF935_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text +weights/yae-jp/added_IVF935_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..950d63cb0df8ace8d73716170ad2c95df86da87b --- /dev/null +++ b/.gitignore @@ -0,0 +1,382 @@ +## Ignore Visual Studio temporary files, build results, and +## files generated by popular Visual Studio add-ons. +## +## Get latest from https://github.com/github/gitignore/blob/master/VisualStudio.gitignore + +# User-specific files +*.rsuser +*.suo +*.user +*.userosscache +*.sln.docstates + +# User-specific files (MonoDevelop/Xamarin Studio) +*.userprefs + +# Mono auto generated files +mono_crash.* + +# Build results +[Dd]ebug/ +[Dd]ebugPublic/ +[Rr]elease/ +[Rr]eleases/ +x64/ +x86/ +[Ww][Ii][Nn]32/ +[Aa][Rr][Mm]/ +[Aa][Rr][Mm]64/ +bld/ +[Bb]in/ +[Oo]bj/ +[Oo]ut/ +[Ll]og/ +[Ll]ogs/ +infer_pack\__pycache__ +# Visual Studio 2015/2017 cache/options directory +.vs/ +# Uncomment if you have tasks that create the project's static files in wwwroot +#wwwroot/ + +# Visual Studio 2017 auto generated files +Generated\ Files/ + +# MSTest test Results +[Tt]est[Rr]esult*/ +[Bb]uild[Ll]og.* + +# NUnit +*.VisualState.xml +TestResult.xml +nunit-*.xml + +# Build Results of an ATL Project +[Dd]ebugPS/ +[Rr]eleasePS/ +dlldata.c + +# Benchmark Results +BenchmarkDotNet.Artifacts/ + +# .NET Core +project.lock.json +project.fragment.lock.json +artifacts/ + +# ASP.NET Scaffolding +ScaffoldingReadMe.txt + +# StyleCop +StyleCopReport.xml + +# Files built by Visual Studio +*_i.c +*_p.c +*_h.h +*.ilk +*.meta +*.obj +*.iobj +*.pch +*.pdb +*.ipdb +*.pgc +*.pgd +*.rsp +*.sbr +*.tlb +*.tli +*.tlh +*.tmp +*.tmp_proj +*_wpftmp.csproj +*.log +*.vspscc +*.vssscc +.builds +*.pidb +*.svclog +*.scc + +# Chutzpah Test files +_Chutzpah* + +# Visual C++ cache files +ipch/ +*.aps +*.ncb +*.opendb +*.opensdf +*.sdf +*.cachefile +*.VC.db +*.VC.VC.opendb + +# Visual Studio profiler +*.psess +*.vsp +*.vspx +*.sap + +# Visual Studio Trace Files +*.e2e + +# TFS 2012 Local Workspace +$tf/ + +# Guidance Automation Toolkit +*.gpState + +# ReSharper is a .NET coding add-in +_ReSharper*/ +*.[Rr]e[Ss]harper +*.DotSettings.user + +# TeamCity is a build add-in +_TeamCity* + +# DotCover is a Code Coverage Tool +*.dotCover + +# AxoCover is a Code Coverage Tool +.axoCover/* +!.axoCover/settings.json + +# Coverlet is a free, cross platform Code Coverage Tool +coverage*.json +coverage*.xml +coverage*.info + +# Visual Studio code coverage results +*.coverage +*.coveragexml + +# NCrunch +_NCrunch_* +.*crunch*.local.xml +nCrunchTemp_* + +# MightyMoose +*.mm.* +AutoTest.Net/ + +# Web workbench (sass) +.sass-cache/ + +# Installshield output folder +[Ee]xpress/ + +# DocProject is a documentation generator add-in +DocProject/buildhelp/ +DocProject/Help/*.HxT +DocProject/Help/*.HxC +DocProject/Help/*.hhc +DocProject/Help/*.hhk +DocProject/Help/*.hhp +DocProject/Help/Html2 +DocProject/Help/html + +# Click-Once directory +publish/ + +# Publish Web Output +*.[Pp]ublish.xml +*.azurePubxml +# Note: Comment the next line if you want to checkin your web deploy settings, +# but database connection strings (with potential passwords) will be unencrypted +*.pubxml +*.publishproj + +# Microsoft Azure Web App publish settings. Comment the next line if you want to +# checkin your Azure Web App publish settings, but sensitive information contained +# in these scripts will be unencrypted +PublishScripts/ + +# NuGet Packages +*.nupkg +# NuGet Symbol Packages +*.snupkg +# The packages folder can be ignored because of Package Restore +**/[Pp]ackages/* +# except build/, which is used as an MSBuild target. +!**/[Pp]ackages/build/ +# Uncomment if necessary however generally it will be regenerated when needed +#!**/[Pp]ackages/repositories.config +# NuGet v3's project.json files produces more ignorable files +*.nuget.props +*.nuget.targets + +# Microsoft Azure Build Output +csx/ +*.build.csdef + +# Microsoft Azure Emulator +ecf/ +rcf/ + +# Windows Store app package directories and files +AppPackages/ +BundleArtifacts/ +Package.StoreAssociation.xml +_pkginfo.txt +*.appx +*.appxbundle +*.appxupload + +# Visual Studio cache files +# files ending in .cache can be ignored +*.[Cc]ache +# but keep track of directories ending in .cache +!?*.[Cc]ache/ + +# Others +ClientBin/ +~$* +*~ +*.dbmdl +*.dbproj.schemaview +*.jfm +*.pfx +*.publishsettings +orleans.codegen.cs + +# Including strong name files can present a security risk +# (https://github.com/github/gitignore/pull/2483#issue-259490424) +#*.snk + +# Since there are multiple workflows, uncomment next line to ignore bower_components +# (https://github.com/github/gitignore/pull/1529#issuecomment-104372622) +#bower_components/ + +# RIA/Silverlight projects +Generated_Code/ + +# Backup & report files from converting an old project file +# to a newer Visual Studio version. Backup files are not needed, +# because we have git ;-) +_UpgradeReport_Files/ +Backup*/ +UpgradeLog*.XML +UpgradeLog*.htm +ServiceFabricBackup/ +*.rptproj.bak + +# SQL Server files +*.mdf +*.ldf +*.ndf + +# Business Intelligence projects +*.rdl.data +*.bim.layout +*.bim_*.settings +*.rptproj.rsuser +*- [Bb]ackup.rdl +*- [Bb]ackup ([0-9]).rdl +*- [Bb]ackup ([0-9][0-9]).rdl + +# Microsoft Fakes +FakesAssemblies/ + +# GhostDoc plugin setting file +*.GhostDoc.xml + +# Node.js Tools for Visual Studio +.ntvs_analysis.dat +node_modules/ + +# Visual Studio 6 build log +*.plg + +# Visual Studio 6 workspace options file +*.opt + +# Visual Studio 6 auto-generated workspace file (contains which files were open etc.) +*.vbw + +# Visual Studio LightSwitch build output +**/*.HTMLClient/GeneratedArtifacts +**/*.DesktopClient/GeneratedArtifacts +**/*.DesktopClient/ModelManifest.xml +**/*.Server/GeneratedArtifacts +**/*.Server/ModelManifest.xml +_Pvt_Extensions + +# Paket dependency manager +.paket/paket.exe +paket-files/ + +# FAKE - F# Make +.fake/ + +# CodeRush personal settings +.cr/personal + +# Python Tools for Visual Studio (PTVS) +__pycache__/ + + +# Cake - Uncomment if you are using it +# tools/** +# !tools/packages.config + +# Tabs Studio +*.tss + +# Telerik's JustMock configuration file +*.jmconfig + +# BizTalk build output +*.btp.cs +*.btm.cs +*.odx.cs +*.xsd.cs + +# OpenCover UI analysis results +OpenCover/ + +# Azure Stream Analytics local run output +ASALocalRun/ + +# MSBuild Binary and Structured Log +*.binlog + +# NVidia Nsight GPU debugger configuration file +*.nvuser + +# MFractors (Xamarin productivity tool) working folder +.mfractor/ + +# Local History for Visual Studio +.localhistory/ + +# BeatPulse healthcheck temp database +healthchecksdb + +# Backup folder for Package Reference Convert tool in Visual Studio 2017 +MigrationBackup/ + +# Ionide (cross platform F# VS Code tools) working folder +.ionide/ + +# Fody - auto-generated XML schema +FodyWeavers.xsd + +# build +build +monotonic_align/core.c +*.o +*.so +*.dll + +# data +/config.json +/*.pth +*.wav +/monotonic_align/monotonic_align +/resources +/MoeGoe.spec +/dist/MoeGoe +/dist + +.idea \ No newline at end of file diff --git a/README.md b/README.md new file mode 100644 index 0000000000000000000000000000000000000000..f077cd85340c26ebfcb0857816d0f1f511408242 --- /dev/null +++ b/README.md @@ -0,0 +1,14 @@ +--- +title: Rvc Models +emoji: 🎤 +colorFrom: red +colorTo: blue +sdk: gradio +sdk_version: 3.27.0 +app_file: app.py +pinned: false +license: mit +duplicated_from: ardha27/rvc-models +--- + +Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/app.py b/app.py new file mode 100644 index 0000000000000000000000000000000000000000..d1d4fb32cf4b9622530b9fdba4af2ffea3a48c79 --- /dev/null +++ b/app.py @@ -0,0 +1,188 @@ +import os +import json +import argparse +import traceback +import logging +import gradio as gr +import numpy as np +import librosa +import torch +import asyncio +import edge_tts +from datetime import datetime +from fairseq import checkpoint_utils +from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono +from vc_infer_pipeline import VC +from config import ( + is_half, + device +) +logging.getLogger("numba").setLevel(logging.WARNING) +limitation = os.getenv("SYSTEM") == "spaces" # limit audio length in huggingface spaces + +def create_vc_fn(tgt_sr, net_g, vc, if_f0, file_index, file_big_npy): + def vc_fn( + input_audio, + f0_up_key, + f0_method, + index_rate, + tts_mode, + tts_text, + tts_voice + ): + try: + if tts_mode: + if len(tts_text) > 100 and limitation: + return "Text is too long", None + if tts_text is None or tts_voice is None: + return "You need to enter text and select a voice", None + asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3")) + audio, sr = librosa.load("tts.mp3", sr=16000, mono=True) + else: + if args.files: + audio, sr = librosa.load(input_audio, sr=16000, mono=True) + else: + if input_audio is None: + return "You need to upload an audio", None + sampling_rate, audio = input_audio + duration = audio.shape[0] / sampling_rate + if duration > 20 and limitation: + return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None + audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) + if len(audio.shape) > 1: + audio = librosa.to_mono(audio.transpose(1, 0)) + if sampling_rate != 16000: + audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) + times = [0, 0, 0] + f0_up_key = int(f0_up_key) + audio_opt = vc.pipeline( + hubert_model, + net_g, + 0, + audio, + times, + f0_up_key, + f0_method, + file_index, + file_big_npy, + index_rate, + if_f0, + ) + print( + f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s" + ) + return "Success", (tgt_sr, audio_opt) + except: + info = traceback.format_exc() + print(info) + return info, (None, None) + return vc_fn + +def load_hubert(): + global hubert_model + models, _, _ = checkpoint_utils.load_model_ensemble_and_task( + ["hubert_base.pt"], + suffix="", + ) + hubert_model = models[0] + hubert_model = hubert_model.to(device) + if is_half: + hubert_model = hubert_model.half() + else: + hubert_model = hubert_model.float() + hubert_model.eval() + +def change_to_tts_mode(tts_mode): + if tts_mode: + return gr.Audio.update(visible=False), gr.Textbox.update(visible=True), gr.Dropdown.update(visible=True) + else: + return gr.Audio.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False) + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--api', action="store_true", default=False) + parser.add_argument("--share", action="store_true", default=False, help="share gradio app") + parser.add_argument("--files", action="store_true", default=False, help="load audio from path") + args, unknown = parser.parse_known_args() + load_hubert() + models = [] + tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) + voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list] + with open("weights/model_info.json", "r", encoding="utf-8") as f: + models_info = json.load(f) + for name, info in models_info.items(): + if not info['enable']: + continue + title = info['title'] + author = info.get("author", None) + cover = f"weights/{name}/{info['cover']}" + index = f"weights/{name}/{info['feature_retrieval_library']}" + npy = f"weights/{name}/{info['feature_file']}" + cpt = torch.load(f"weights/{name}/{name}.pth", map_location="cpu") + tgt_sr = cpt["config"][-1] + cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk + if_f0 = cpt.get("f0", 1) + if if_f0 == 1: + net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half) + else: + net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) + del net_g.enc_q + print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净, 真奇葩 + net_g.eval().to(device) + if is_half: + net_g = net_g.half() + else: + net_g = net_g.float() + vc = VC(tgt_sr, device, is_half) + models.append((name, title, author, cover, create_vc_fn(tgt_sr, net_g, vc, if_f0, index, npy))) + with gr.Blocks() as app: + gr.Markdown( + "#
RVC Models\n" + "##
The input audio should be clean and pure voice without background music.\n" + "![visitor badge](https://visitor-badge.glitch.me/badge?page_id=ardha27.Rvc-Models)\n\n" + "[![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/12rbZk9CoXD1m84dqBW5IKMBjiVY6tcoj?usp=share_link)\n\n" + "[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm-dark.svg)](https://huggingface.co/spaces/ardha27pi/rvc-models?duplicate=true)\n\n" + "[![Train Own Voice](https://badgen.net/badge/icon/github?icon=github&label=Train%20Voice)](https://github.com/ardha27/AI-Song-Cover-RVC)\n\n" + "[![ko-fi](https://ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/R6R7AH1FA)\n\n" + ) + with gr.Tabs(): + for (name, title, author, cover, vc_fn) in models: + with gr.TabItem(name): + with gr.Row(): + gr.Markdown( + '
' + f'
{title}
\n'+ + (f'
Model author: {author}
' if author else "")+ + (f'' if cover else "")+ + '
' + ) + with gr.Row(): + with gr.Column(): + if args.files: + vc_input = gr.Textbox(label="Input audio path") + else: + vc_input = gr.Audio(label="Input audio"+' (less than 20 seconds)' if limitation else '') + vc_transpose = gr.Number(label="Transpose", value=0) + vc_f0method = gr.Radio( + label="Pitch extraction algorithm, PM is fast but Harvest is better for low frequencies", + choices=["pm", "harvest"], + value="pm", + interactive=True, + ) + vc_index_ratio = gr.Slider( + minimum=0, + maximum=1, + label="Retrieval feature ratio", + value=0.6, + interactive=True, + ) + tts_mode = gr.Checkbox(label="tts (use edge-tts as input)", value=False) + tts_text = gr.Textbox(visible=False,label="TTS text (100 words limitation)" if limitation else "TTS text") + tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female") + vc_submit = gr.Button("Generate", variant="primary") + with gr.Column(): + vc_output1 = gr.Textbox(label="Output Message") + vc_output2 = gr.Audio(label="Output Audio") + vc_submit.click(vc_fn, [vc_input, vc_transpose, vc_f0method, vc_index_ratio, tts_mode, tts_text, tts_voice], [vc_output1, vc_output2]) + tts_mode.change(change_to_tts_mode, [tts_mode], [vc_input, tts_text, tts_voice]) + app.queue(concurrency_count=1, max_size=20, api_open=args.api).launch(share=args.share) \ No newline at end of file diff --git a/config.py b/config.py new file mode 100644 index 0000000000000000000000000000000000000000..c0c16e0017efbcaf250cb539a1d0edb4e83575e4 --- /dev/null +++ b/config.py @@ -0,0 +1,88 @@ +########################硬件参数######################## + +# 填写cuda:x, cpu 或 mps, x指代第几张卡,只支持 N卡 / Apple Silicon 加速 +device = "cuda:0" + +# 9-10-20-30-40系显卡无脑True,不影响质量,>=20显卡开启有加速 +is_half = True + +# 默认0用上所有线程,写数字限制CPU资源使用 +n_cpu = 0 + +########################硬件参数######################## + + +##################下为参数处理逻辑,勿动################## + +########################命令行参数######################## +import argparse + +parser = argparse.ArgumentParser() +parser.add_argument("--port", type=int, default=7865, help="Listen port") +parser.add_argument("--pycmd", type=str, default="python", help="Python command") +parser.add_argument("--colab", action="store_true", help="Launch in colab") +parser.add_argument( + "--noparallel", action="store_true", help="Disable parallel processing" +) +parser.add_argument( + "--noautoopen", action="store_true", help="Do not open in browser automatically" +) +cmd_opts, unknown = parser.parse_known_args() + +python_cmd = cmd_opts.pycmd +listen_port = cmd_opts.port +iscolab = cmd_opts.colab +noparallel = cmd_opts.noparallel +noautoopen = cmd_opts.noautoopen +########################命令行参数######################## + +import sys +import torch + + +# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+. +# check `getattr` and try it for compatibility +def has_mps() -> bool: + if sys.platform != "darwin": + return False + else: + if not getattr(torch, "has_mps", False): + return False + try: + torch.zeros(1).to(torch.device("mps")) + return True + except Exception: + return False + + +if not torch.cuda.is_available(): + if has_mps(): + print("没有发现支持的N卡, 使用MPS进行推理") + device = "mps" + else: + print("没有发现支持的N卡, 使用CPU进行推理") + device = "cpu" + is_half = False + +if device not in ["cpu", "mps"]: + gpu_name = torch.cuda.get_device_name(int(device.split(":")[-1])) + if "16" in gpu_name or "MX" in gpu_name: + print("16系显卡/MX系显卡强制单精度") + is_half = False + +from multiprocessing import cpu_count + +if n_cpu == 0: + n_cpu = cpu_count() +if is_half: + # 6G显存配置 + x_pad = 3 + x_query = 10 + x_center = 60 + x_max = 65 +else: + # 5G显存配置 + x_pad = 1 + x_query = 6 + x_center = 38 + x_max = 41 diff --git a/hubert_base.pt b/hubert_base.pt new file mode 100644 index 0000000000000000000000000000000000000000..72f47ab58564f01d5cc8b05c63bdf96d944551ff --- /dev/null +++ b/hubert_base.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f54b40fd2802423a5643779c4861af1e9ee9c1564dc9d32f54f20b5ffba7db96 +size 189507909 diff --git a/infer_pack/__pycache__/attentions.cpython-310.pyc b/infer_pack/__pycache__/attentions.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..78b88aa91ae112d626a9b5d0f34cb670c5cec4fb Binary files /dev/null and b/infer_pack/__pycache__/attentions.cpython-310.pyc differ diff --git a/infer_pack/__pycache__/commons.cpython-310.pyc b/infer_pack/__pycache__/commons.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..270329c5e85df49163f86dfa76b139737eac0c60 Binary files /dev/null and b/infer_pack/__pycache__/commons.cpython-310.pyc differ diff --git a/infer_pack/__pycache__/models.cpython-310.pyc b/infer_pack/__pycache__/models.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1c5802182b85d500a65d3c1f79ac4c65f487bce5 Binary files /dev/null and b/infer_pack/__pycache__/models.cpython-310.pyc differ diff --git a/infer_pack/__pycache__/modules.cpython-310.pyc b/infer_pack/__pycache__/modules.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3e00f5729174861800491228a36999a85809f764 Binary files /dev/null and b/infer_pack/__pycache__/modules.cpython-310.pyc differ diff --git a/infer_pack/__pycache__/transforms.cpython-310.pyc b/infer_pack/__pycache__/transforms.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..56e8940178578f370d9063c0ae00b9b01517c772 Binary files /dev/null and b/infer_pack/__pycache__/transforms.cpython-310.pyc differ diff --git a/infer_pack/attentions.py b/infer_pack/attentions.py new file mode 100644 index 0000000000000000000000000000000000000000..77cb63ffccf3e33badf22d50862a64ba517b487f --- /dev/null +++ b/infer_pack/attentions.py @@ -0,0 +1,417 @@ +import copy +import math +import numpy as np +import torch +from torch import nn +from torch.nn import functional as F + +from infer_pack import commons +from infer_pack import modules +from infer_pack.modules import LayerNorm + + +class Encoder(nn.Module): + def __init__( + self, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size=1, + p_dropout=0.0, + window_size=10, + **kwargs + ): + super().__init__() + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.window_size = window_size + + self.drop = nn.Dropout(p_dropout) + self.attn_layers = nn.ModuleList() + self.norm_layers_1 = nn.ModuleList() + self.ffn_layers = nn.ModuleList() + self.norm_layers_2 = nn.ModuleList() + for i in range(self.n_layers): + self.attn_layers.append( + MultiHeadAttention( + hidden_channels, + hidden_channels, + n_heads, + p_dropout=p_dropout, + window_size=window_size, + ) + ) + self.norm_layers_1.append(LayerNorm(hidden_channels)) + self.ffn_layers.append( + FFN( + hidden_channels, + hidden_channels, + filter_channels, + kernel_size, + p_dropout=p_dropout, + ) + ) + self.norm_layers_2.append(LayerNorm(hidden_channels)) + + def forward(self, x, x_mask): + attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) + x = x * x_mask + for i in range(self.n_layers): + y = self.attn_layers[i](x, x, attn_mask) + y = self.drop(y) + x = self.norm_layers_1[i](x + y) + + y = self.ffn_layers[i](x, x_mask) + y = self.drop(y) + x = self.norm_layers_2[i](x + y) + x = x * x_mask + return x + + +class Decoder(nn.Module): + def __init__( + self, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size=1, + p_dropout=0.0, + proximal_bias=False, + proximal_init=True, + **kwargs + ): + super().__init__() + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.proximal_bias = proximal_bias + self.proximal_init = proximal_init + + self.drop = nn.Dropout(p_dropout) + self.self_attn_layers = nn.ModuleList() + self.norm_layers_0 = nn.ModuleList() + self.encdec_attn_layers = nn.ModuleList() + self.norm_layers_1 = nn.ModuleList() + self.ffn_layers = nn.ModuleList() + self.norm_layers_2 = nn.ModuleList() + for i in range(self.n_layers): + self.self_attn_layers.append( + MultiHeadAttention( + hidden_channels, + hidden_channels, + n_heads, + p_dropout=p_dropout, + proximal_bias=proximal_bias, + proximal_init=proximal_init, + ) + ) + self.norm_layers_0.append(LayerNorm(hidden_channels)) + self.encdec_attn_layers.append( + MultiHeadAttention( + hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout + ) + ) + self.norm_layers_1.append(LayerNorm(hidden_channels)) + self.ffn_layers.append( + FFN( + hidden_channels, + hidden_channels, + filter_channels, + kernel_size, + p_dropout=p_dropout, + causal=True, + ) + ) + self.norm_layers_2.append(LayerNorm(hidden_channels)) + + def forward(self, x, x_mask, h, h_mask): + """ + x: decoder input + h: encoder output + """ + self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to( + device=x.device, dtype=x.dtype + ) + encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1) + x = x * x_mask + for i in range(self.n_layers): + y = self.self_attn_layers[i](x, x, self_attn_mask) + y = self.drop(y) + x = self.norm_layers_0[i](x + y) + + y = self.encdec_attn_layers[i](x, h, encdec_attn_mask) + y = self.drop(y) + x = self.norm_layers_1[i](x + y) + + y = self.ffn_layers[i](x, x_mask) + y = self.drop(y) + x = self.norm_layers_2[i](x + y) + x = x * x_mask + return x + + +class MultiHeadAttention(nn.Module): + def __init__( + self, + channels, + out_channels, + n_heads, + p_dropout=0.0, + window_size=None, + heads_share=True, + block_length=None, + proximal_bias=False, + proximal_init=False, + ): + super().__init__() + assert channels % n_heads == 0 + + self.channels = channels + self.out_channels = out_channels + self.n_heads = n_heads + self.p_dropout = p_dropout + self.window_size = window_size + self.heads_share = heads_share + self.block_length = block_length + self.proximal_bias = proximal_bias + self.proximal_init = proximal_init + self.attn = None + + self.k_channels = channels // n_heads + self.conv_q = nn.Conv1d(channels, channels, 1) + self.conv_k = nn.Conv1d(channels, channels, 1) + self.conv_v = nn.Conv1d(channels, channels, 1) + self.conv_o = nn.Conv1d(channels, out_channels, 1) + self.drop = nn.Dropout(p_dropout) + + if window_size is not None: + n_heads_rel = 1 if heads_share else n_heads + rel_stddev = self.k_channels**-0.5 + self.emb_rel_k = nn.Parameter( + torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) + * rel_stddev + ) + self.emb_rel_v = nn.Parameter( + torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) + * rel_stddev + ) + + nn.init.xavier_uniform_(self.conv_q.weight) + nn.init.xavier_uniform_(self.conv_k.weight) + nn.init.xavier_uniform_(self.conv_v.weight) + if proximal_init: + with torch.no_grad(): + self.conv_k.weight.copy_(self.conv_q.weight) + self.conv_k.bias.copy_(self.conv_q.bias) + + def forward(self, x, c, attn_mask=None): + q = self.conv_q(x) + k = self.conv_k(c) + v = self.conv_v(c) + + x, self.attn = self.attention(q, k, v, mask=attn_mask) + + x = self.conv_o(x) + return x + + def attention(self, query, key, value, mask=None): + # reshape [b, d, t] -> [b, n_h, t, d_k] + b, d, t_s, t_t = (*key.size(), query.size(2)) + query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) + key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) + value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) + + scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) + if self.window_size is not None: + assert ( + t_s == t_t + ), "Relative attention is only available for self-attention." + key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) + rel_logits = self._matmul_with_relative_keys( + query / math.sqrt(self.k_channels), key_relative_embeddings + ) + scores_local = self._relative_position_to_absolute_position(rel_logits) + scores = scores + scores_local + if self.proximal_bias: + assert t_s == t_t, "Proximal bias is only available for self-attention." + scores = scores + self._attention_bias_proximal(t_s).to( + device=scores.device, dtype=scores.dtype + ) + if mask is not None: + scores = scores.masked_fill(mask == 0, -1e4) + if self.block_length is not None: + assert ( + t_s == t_t + ), "Local attention is only available for self-attention." + block_mask = ( + torch.ones_like(scores) + .triu(-self.block_length) + .tril(self.block_length) + ) + scores = scores.masked_fill(block_mask == 0, -1e4) + p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] + p_attn = self.drop(p_attn) + output = torch.matmul(p_attn, value) + if self.window_size is not None: + relative_weights = self._absolute_position_to_relative_position(p_attn) + value_relative_embeddings = self._get_relative_embeddings( + self.emb_rel_v, t_s + ) + output = output + self._matmul_with_relative_values( + relative_weights, value_relative_embeddings + ) + output = ( + output.transpose(2, 3).contiguous().view(b, d, t_t) + ) # [b, n_h, t_t, d_k] -> [b, d, t_t] + return output, p_attn + + def _matmul_with_relative_values(self, x, y): + """ + x: [b, h, l, m] + y: [h or 1, m, d] + ret: [b, h, l, d] + """ + ret = torch.matmul(x, y.unsqueeze(0)) + return ret + + def _matmul_with_relative_keys(self, x, y): + """ + x: [b, h, l, d] + y: [h or 1, m, d] + ret: [b, h, l, m] + """ + ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) + return ret + + def _get_relative_embeddings(self, relative_embeddings, length): + max_relative_position = 2 * self.window_size + 1 + # Pad first before slice to avoid using cond ops. + pad_length = max(length - (self.window_size + 1), 0) + slice_start_position = max((self.window_size + 1) - length, 0) + slice_end_position = slice_start_position + 2 * length - 1 + if pad_length > 0: + padded_relative_embeddings = F.pad( + relative_embeddings, + commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]), + ) + else: + padded_relative_embeddings = relative_embeddings + used_relative_embeddings = padded_relative_embeddings[ + :, slice_start_position:slice_end_position + ] + return used_relative_embeddings + + def _relative_position_to_absolute_position(self, x): + """ + x: [b, h, l, 2*l-1] + ret: [b, h, l, l] + """ + batch, heads, length, _ = x.size() + # Concat columns of pad to shift from relative to absolute indexing. + x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])) + + # Concat extra elements so to add up to shape (len+1, 2*len-1). + x_flat = x.view([batch, heads, length * 2 * length]) + x_flat = F.pad( + x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]) + ) + + # Reshape and slice out the padded elements. + x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[ + :, :, :length, length - 1 : + ] + return x_final + + def _absolute_position_to_relative_position(self, x): + """ + x: [b, h, l, l] + ret: [b, h, l, 2*l-1] + """ + batch, heads, length, _ = x.size() + # padd along column + x = F.pad( + x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]) + ) + x_flat = x.view([batch, heads, length**2 + length * (length - 1)]) + # add 0's in the beginning that will skew the elements after reshape + x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])) + x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:] + return x_final + + def _attention_bias_proximal(self, length): + """Bias for self-attention to encourage attention to close positions. + Args: + length: an integer scalar. + Returns: + a Tensor with shape [1, 1, length, length] + """ + r = torch.arange(length, dtype=torch.float32) + diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) + return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) + + +class FFN(nn.Module): + def __init__( + self, + in_channels, + out_channels, + filter_channels, + kernel_size, + p_dropout=0.0, + activation=None, + causal=False, + ): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.filter_channels = filter_channels + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.activation = activation + self.causal = causal + + if causal: + self.padding = self._causal_padding + else: + self.padding = self._same_padding + + self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) + self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) + self.drop = nn.Dropout(p_dropout) + + def forward(self, x, x_mask): + x = self.conv_1(self.padding(x * x_mask)) + if self.activation == "gelu": + x = x * torch.sigmoid(1.702 * x) + else: + x = torch.relu(x) + x = self.drop(x) + x = self.conv_2(self.padding(x * x_mask)) + return x * x_mask + + def _causal_padding(self, x): + if self.kernel_size == 1: + return x + pad_l = self.kernel_size - 1 + pad_r = 0 + padding = [[0, 0], [0, 0], [pad_l, pad_r]] + x = F.pad(x, commons.convert_pad_shape(padding)) + return x + + def _same_padding(self, x): + if self.kernel_size == 1: + return x + pad_l = (self.kernel_size - 1) // 2 + pad_r = self.kernel_size // 2 + padding = [[0, 0], [0, 0], [pad_l, pad_r]] + x = F.pad(x, commons.convert_pad_shape(padding)) + return x diff --git a/infer_pack/commons.py b/infer_pack/commons.py new file mode 100644 index 0000000000000000000000000000000000000000..54470986f37825b35d90d7efa7437d1c26b87215 --- /dev/null +++ b/infer_pack/commons.py @@ -0,0 +1,166 @@ +import math +import numpy as np +import torch +from torch import nn +from torch.nn import functional as F + + +def init_weights(m, mean=0.0, std=0.01): + classname = m.__class__.__name__ + if classname.find("Conv") != -1: + m.weight.data.normal_(mean, std) + + +def get_padding(kernel_size, dilation=1): + return int((kernel_size * dilation - dilation) / 2) + + +def convert_pad_shape(pad_shape): + l = pad_shape[::-1] + pad_shape = [item for sublist in l for item in sublist] + return pad_shape + + +def kl_divergence(m_p, logs_p, m_q, logs_q): + """KL(P||Q)""" + kl = (logs_q - logs_p) - 0.5 + kl += ( + 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q) + ) + return kl + + +def rand_gumbel(shape): + """Sample from the Gumbel distribution, protect from overflows.""" + uniform_samples = torch.rand(shape) * 0.99998 + 0.00001 + return -torch.log(-torch.log(uniform_samples)) + + +def rand_gumbel_like(x): + g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device) + return g + + +def slice_segments(x, ids_str, segment_size=4): + ret = torch.zeros_like(x[:, :, :segment_size]) + for i in range(x.size(0)): + idx_str = ids_str[i] + idx_end = idx_str + segment_size + ret[i] = x[i, :, idx_str:idx_end] + return ret + + +def slice_segments2(x, ids_str, segment_size=4): + ret = torch.zeros_like(x[:, :segment_size]) + for i in range(x.size(0)): + idx_str = ids_str[i] + idx_end = idx_str + segment_size + ret[i] = x[i, idx_str:idx_end] + return ret + + +def rand_slice_segments(x, x_lengths=None, segment_size=4): + b, d, t = x.size() + if x_lengths is None: + x_lengths = t + ids_str_max = x_lengths - segment_size + 1 + ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) + ret = slice_segments(x, ids_str, segment_size) + return ret, ids_str + + +def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4): + position = torch.arange(length, dtype=torch.float) + num_timescales = channels // 2 + log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / ( + num_timescales - 1 + ) + inv_timescales = min_timescale * torch.exp( + torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment + ) + scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) + signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) + signal = F.pad(signal, [0, 0, 0, channels % 2]) + signal = signal.view(1, channels, length) + return signal + + +def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): + b, channels, length = x.size() + signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) + return x + signal.to(dtype=x.dtype, device=x.device) + + +def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): + b, channels, length = x.size() + signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) + return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis) + + +def subsequent_mask(length): + mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) + return mask + + +@torch.jit.script +def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): + n_channels_int = n_channels[0] + in_act = input_a + input_b + t_act = torch.tanh(in_act[:, :n_channels_int, :]) + s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) + acts = t_act * s_act + return acts + + +def convert_pad_shape(pad_shape): + l = pad_shape[::-1] + pad_shape = [item for sublist in l for item in sublist] + return pad_shape + + +def shift_1d(x): + x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] + return x + + +def sequence_mask(length, max_length=None): + if max_length is None: + max_length = length.max() + x = torch.arange(max_length, dtype=length.dtype, device=length.device) + return x.unsqueeze(0) < length.unsqueeze(1) + + +def generate_path(duration, mask): + """ + duration: [b, 1, t_x] + mask: [b, 1, t_y, t_x] + """ + device = duration.device + + b, _, t_y, t_x = mask.shape + cum_duration = torch.cumsum(duration, -1) + + cum_duration_flat = cum_duration.view(b * t_x) + path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) + path = path.view(b, t_x, t_y) + path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] + path = path.unsqueeze(1).transpose(2, 3) * mask + return path + + +def clip_grad_value_(parameters, clip_value, norm_type=2): + if isinstance(parameters, torch.Tensor): + parameters = [parameters] + parameters = list(filter(lambda p: p.grad is not None, parameters)) + norm_type = float(norm_type) + if clip_value is not None: + clip_value = float(clip_value) + + total_norm = 0 + for p in parameters: + param_norm = p.grad.data.norm(norm_type) + total_norm += param_norm.item() ** norm_type + if clip_value is not None: + p.grad.data.clamp_(min=-clip_value, max=clip_value) + total_norm = total_norm ** (1.0 / norm_type) + return total_norm diff --git a/infer_pack/models.py b/infer_pack/models.py new file mode 100644 index 0000000000000000000000000000000000000000..96165f73644e6fb92d0ffedb4a3c9e1a457cb989 --- /dev/null +++ b/infer_pack/models.py @@ -0,0 +1,982 @@ +import math, pdb, os +from time import time as ttime +import torch +from torch import nn +from torch.nn import functional as F +from infer_pack import modules +from infer_pack import attentions +from infer_pack import commons +from infer_pack.commons import init_weights, get_padding +from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d +from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm +from infer_pack.commons import init_weights +import numpy as np +from infer_pack import commons + + +class TextEncoder256(nn.Module): + def __init__( + self, + out_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + f0=True, + ): + super().__init__() + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.emb_phone = nn.Linear(256, hidden_channels) + self.lrelu = nn.LeakyReLU(0.1, inplace=True) + if f0 == True: + self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256 + self.encoder = attentions.Encoder( + hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout + ) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, phone, pitch, lengths): + if pitch == None: + x = self.emb_phone(phone) + else: + x = self.emb_phone(phone) + self.emb_pitch(pitch) + x = x * math.sqrt(self.hidden_channels) # [b, t, h] + x = self.lrelu(x) + x = torch.transpose(x, 1, -1) # [b, h, t] + x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( + x.dtype + ) + x = self.encoder(x * x_mask, x_mask) + stats = self.proj(x) * x_mask + + m, logs = torch.split(stats, self.out_channels, dim=1) + return m, logs, x_mask + + +class TextEncoder256Sim(nn.Module): + def __init__( + self, + out_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + f0=True, + ): + super().__init__() + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.emb_phone = nn.Linear(256, hidden_channels) + self.lrelu = nn.LeakyReLU(0.1, inplace=True) + if f0 == True: + self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256 + self.encoder = attentions.Encoder( + hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout + ) + self.proj = nn.Conv1d(hidden_channels, out_channels, 1) + + def forward(self, phone, pitch, lengths): + if pitch == None: + x = self.emb_phone(phone) + else: + x = self.emb_phone(phone) + self.emb_pitch(pitch) + x = x * math.sqrt(self.hidden_channels) # [b, t, h] + x = self.lrelu(x) + x = torch.transpose(x, 1, -1) # [b, h, t] + x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( + x.dtype + ) + x = self.encoder(x * x_mask, x_mask) + x = self.proj(x) * x_mask + return x, x_mask + + +class ResidualCouplingBlock(nn.Module): + def __init__( + self, + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + n_flows=4, + gin_channels=0, + ): + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.n_flows = n_flows + self.gin_channels = gin_channels + + self.flows = nn.ModuleList() + for i in range(n_flows): + self.flows.append( + modules.ResidualCouplingLayer( + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=gin_channels, + mean_only=True, + ) + ) + self.flows.append(modules.Flip()) + + def forward(self, x, x_mask, g=None, reverse=False): + if not reverse: + for flow in self.flows: + x, _ = flow(x, x_mask, g=g, reverse=reverse) + else: + for flow in reversed(self.flows): + x = flow(x, x_mask, g=g, reverse=reverse) + return x + + def remove_weight_norm(self): + for i in range(self.n_flows): + self.flows[i * 2].remove_weight_norm() + + +class PosteriorEncoder(nn.Module): + def __init__( + self, + in_channels, + out_channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=0, + ): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + + self.pre = nn.Conv1d(in_channels, hidden_channels, 1) + self.enc = modules.WN( + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=gin_channels, + ) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, x, x_lengths, g=None): + x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( + x.dtype + ) + x = self.pre(x) * x_mask + x = self.enc(x, x_mask, g=g) + stats = self.proj(x) * x_mask + m, logs = torch.split(stats, self.out_channels, dim=1) + z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask + return z, m, logs, x_mask + + def remove_weight_norm(self): + self.enc.remove_weight_norm() + + +class Generator(torch.nn.Module): + def __init__( + self, + initial_channel, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=0, + ): + super(Generator, self).__init__() + self.num_kernels = len(resblock_kernel_sizes) + self.num_upsamples = len(upsample_rates) + self.conv_pre = Conv1d( + initial_channel, upsample_initial_channel, 7, 1, padding=3 + ) + resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 + + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): + self.ups.append( + weight_norm( + ConvTranspose1d( + upsample_initial_channel // (2**i), + upsample_initial_channel // (2 ** (i + 1)), + k, + u, + padding=(k - u) // 2, + ) + ) + ) + + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = upsample_initial_channel // (2 ** (i + 1)) + for j, (k, d) in enumerate( + zip(resblock_kernel_sizes, resblock_dilation_sizes) + ): + self.resblocks.append(resblock(ch, k, d)) + + self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) + self.ups.apply(init_weights) + + if gin_channels != 0: + self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) + + def forward(self, x, g=None): + x = self.conv_pre(x) + if g is not None: + x = x + self.cond(g) + + for i in range(self.num_upsamples): + x = F.leaky_relu(x, modules.LRELU_SLOPE) + x = self.ups[i](x) + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i * self.num_kernels + j](x) + else: + xs += self.resblocks[i * self.num_kernels + j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + + return x + + def remove_weight_norm(self): + for l in self.ups: + remove_weight_norm(l) + for l in self.resblocks: + l.remove_weight_norm() + + +class SineGen(torch.nn.Module): + """Definition of sine generator + SineGen(samp_rate, harmonic_num = 0, + sine_amp = 0.1, noise_std = 0.003, + voiced_threshold = 0, + flag_for_pulse=False) + samp_rate: sampling rate in Hz + harmonic_num: number of harmonic overtones (default 0) + sine_amp: amplitude of sine-wavefrom (default 0.1) + noise_std: std of Gaussian noise (default 0.003) + voiced_thoreshold: F0 threshold for U/V classification (default 0) + flag_for_pulse: this SinGen is used inside PulseGen (default False) + Note: when flag_for_pulse is True, the first time step of a voiced + segment is always sin(np.pi) or cos(0) + """ + + def __init__( + self, + samp_rate, + harmonic_num=0, + sine_amp=0.1, + noise_std=0.003, + voiced_threshold=0, + flag_for_pulse=False, + ): + super(SineGen, self).__init__() + self.sine_amp = sine_amp + self.noise_std = noise_std + self.harmonic_num = harmonic_num + self.dim = self.harmonic_num + 1 + self.sampling_rate = samp_rate + self.voiced_threshold = voiced_threshold + + def _f02uv(self, f0): + # generate uv signal + uv = torch.ones_like(f0) + uv = uv * (f0 > self.voiced_threshold) + return uv + + def forward(self, f0, upp): + """sine_tensor, uv = forward(f0) + input F0: tensor(batchsize=1, length, dim=1) + f0 for unvoiced steps should be 0 + output sine_tensor: tensor(batchsize=1, length, dim) + output uv: tensor(batchsize=1, length, 1) + """ + with torch.no_grad(): + f0 = f0[:, None].transpose(1, 2) + f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device) + # fundamental component + f0_buf[:, :, 0] = f0[:, :, 0] + for idx in np.arange(self.harmonic_num): + f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * ( + idx + 2 + ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic + rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化 + rand_ini = torch.rand( + f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device + ) + rand_ini[:, 0] = 0 + rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini + tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化 + tmp_over_one *= upp + tmp_over_one = F.interpolate( + tmp_over_one.transpose(2, 1), + scale_factor=upp, + mode="linear", + align_corners=True, + ).transpose(2, 1) + rad_values = F.interpolate( + rad_values.transpose(2, 1), scale_factor=upp, mode="nearest" + ).transpose( + 2, 1 + ) ####### + tmp_over_one %= 1 + tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0 + cumsum_shift = torch.zeros_like(rad_values) + cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 + sine_waves = torch.sin( + torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi + ) + sine_waves = sine_waves * self.sine_amp + uv = self._f02uv(f0) + uv = F.interpolate( + uv.transpose(2, 1), scale_factor=upp, mode="nearest" + ).transpose(2, 1) + noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 + noise = noise_amp * torch.randn_like(sine_waves) + sine_waves = sine_waves * uv + noise + return sine_waves, uv, noise + + +class SourceModuleHnNSF(torch.nn.Module): + """SourceModule for hn-nsf + SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, + add_noise_std=0.003, voiced_threshod=0) + sampling_rate: sampling_rate in Hz + harmonic_num: number of harmonic above F0 (default: 0) + sine_amp: amplitude of sine source signal (default: 0.1) + add_noise_std: std of additive Gaussian noise (default: 0.003) + note that amplitude of noise in unvoiced is decided + by sine_amp + voiced_threshold: threhold to set U/V given F0 (default: 0) + Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) + F0_sampled (batchsize, length, 1) + Sine_source (batchsize, length, 1) + noise_source (batchsize, length 1) + uv (batchsize, length, 1) + """ + + def __init__( + self, + sampling_rate, + harmonic_num=0, + sine_amp=0.1, + add_noise_std=0.003, + voiced_threshod=0, + is_half=True, + ): + super(SourceModuleHnNSF, self).__init__() + + self.sine_amp = sine_amp + self.noise_std = add_noise_std + self.is_half = is_half + # to produce sine waveforms + self.l_sin_gen = SineGen( + sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod + ) + + # to merge source harmonics into a single excitation + self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) + self.l_tanh = torch.nn.Tanh() + + def forward(self, x, upp=None): + sine_wavs, uv, _ = self.l_sin_gen(x, upp) + if self.is_half: + sine_wavs = sine_wavs.half() + sine_merge = self.l_tanh(self.l_linear(sine_wavs)) + return sine_merge, None, None # noise, uv + + +class GeneratorNSF(torch.nn.Module): + def __init__( + self, + initial_channel, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels, + sr, + is_half=False, + ): + super(GeneratorNSF, self).__init__() + self.num_kernels = len(resblock_kernel_sizes) + self.num_upsamples = len(upsample_rates) + + self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates)) + self.m_source = SourceModuleHnNSF( + sampling_rate=sr, harmonic_num=0, is_half=is_half + ) + self.noise_convs = nn.ModuleList() + self.conv_pre = Conv1d( + initial_channel, upsample_initial_channel, 7, 1, padding=3 + ) + resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 + + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): + c_cur = upsample_initial_channel // (2 ** (i + 1)) + self.ups.append( + weight_norm( + ConvTranspose1d( + upsample_initial_channel // (2**i), + upsample_initial_channel // (2 ** (i + 1)), + k, + u, + padding=(k - u) // 2, + ) + ) + ) + if i + 1 < len(upsample_rates): + stride_f0 = np.prod(upsample_rates[i + 1 :]) + self.noise_convs.append( + Conv1d( + 1, + c_cur, + kernel_size=stride_f0 * 2, + stride=stride_f0, + padding=stride_f0 // 2, + ) + ) + else: + self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) + + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = upsample_initial_channel // (2 ** (i + 1)) + for j, (k, d) in enumerate( + zip(resblock_kernel_sizes, resblock_dilation_sizes) + ): + self.resblocks.append(resblock(ch, k, d)) + + self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) + self.ups.apply(init_weights) + + if gin_channels != 0: + self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) + + self.upp = np.prod(upsample_rates) + + def forward(self, x, f0, g=None): + har_source, noi_source, uv = self.m_source(f0, self.upp) + har_source = har_source.transpose(1, 2) + x = self.conv_pre(x) + if g is not None: + x = x + self.cond(g) + + for i in range(self.num_upsamples): + x = F.leaky_relu(x, modules.LRELU_SLOPE) + x = self.ups[i](x) + x_source = self.noise_convs[i](har_source) + x = x + x_source + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i * self.num_kernels + j](x) + else: + xs += self.resblocks[i * self.num_kernels + j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + return x + + def remove_weight_norm(self): + for l in self.ups: + remove_weight_norm(l) + for l in self.resblocks: + l.remove_weight_norm() + + +sr2sr = { + "32k": 32000, + "40k": 40000, + "48k": 48000, +} + + +class SynthesizerTrnMs256NSFsid(nn.Module): + def __init__( + self, + spec_channels, + segment_size, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + spk_embed_dim, + gin_channels, + sr, + **kwargs + ): + super().__init__() + if type(sr) == type("strr"): + sr = sr2sr[sr] + self.spec_channels = spec_channels + self.inter_channels = inter_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.resblock = resblock + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.upsample_rates = upsample_rates + self.upsample_initial_channel = upsample_initial_channel + self.upsample_kernel_sizes = upsample_kernel_sizes + self.segment_size = segment_size + self.gin_channels = gin_channels + # self.hop_length = hop_length# + self.spk_embed_dim = spk_embed_dim + self.enc_p = TextEncoder256( + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + ) + self.dec = GeneratorNSF( + inter_channels, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=gin_channels, + sr=sr, + is_half=kwargs["is_half"], + ) + self.enc_q = PosteriorEncoder( + spec_channels, + inter_channels, + hidden_channels, + 5, + 1, + 16, + gin_channels=gin_channels, + ) + self.flow = ResidualCouplingBlock( + inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels + ) + self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) + print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) + + def remove_weight_norm(self): + self.dec.remove_weight_norm() + self.flow.remove_weight_norm() + self.enc_q.remove_weight_norm() + + def forward( + self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds + ): # 这里ds是id,[bs,1] + # print(1,pitch.shape)#[bs,t] + g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 + m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) + z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) + z_p = self.flow(z, y_mask, g=g) + z_slice, ids_slice = commons.rand_slice_segments( + z, y_lengths, self.segment_size + ) + # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length) + pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size) + # print(-2,pitchf.shape,z_slice.shape) + o = self.dec(z_slice, pitchf, g=g) + return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) + + def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None): + g = self.emb_g(sid).unsqueeze(-1) + m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) + z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask + z = self.flow(z_p, x_mask, g=g, reverse=True) + o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g) + return o, x_mask, (z, z_p, m_p, logs_p) + + +class SynthesizerTrnMs256NSFsid_nono(nn.Module): + def __init__( + self, + spec_channels, + segment_size, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + spk_embed_dim, + gin_channels, + sr=None, + **kwargs + ): + super().__init__() + self.spec_channels = spec_channels + self.inter_channels = inter_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.resblock = resblock + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.upsample_rates = upsample_rates + self.upsample_initial_channel = upsample_initial_channel + self.upsample_kernel_sizes = upsample_kernel_sizes + self.segment_size = segment_size + self.gin_channels = gin_channels + # self.hop_length = hop_length# + self.spk_embed_dim = spk_embed_dim + self.enc_p = TextEncoder256( + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + f0=False, + ) + self.dec = Generator( + inter_channels, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=gin_channels, + ) + self.enc_q = PosteriorEncoder( + spec_channels, + inter_channels, + hidden_channels, + 5, + 1, + 16, + gin_channels=gin_channels, + ) + self.flow = ResidualCouplingBlock( + inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels + ) + self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) + print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) + + def remove_weight_norm(self): + self.dec.remove_weight_norm() + self.flow.remove_weight_norm() + self.enc_q.remove_weight_norm() + + def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1] + g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 + m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) + z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) + z_p = self.flow(z, y_mask, g=g) + z_slice, ids_slice = commons.rand_slice_segments( + z, y_lengths, self.segment_size + ) + o = self.dec(z_slice, g=g) + return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) + + def infer(self, phone, phone_lengths, sid, max_len=None): + g = self.emb_g(sid).unsqueeze(-1) + m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) + z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask + z = self.flow(z_p, x_mask, g=g, reverse=True) + o = self.dec((z * x_mask)[:, :, :max_len], g=g) + return o, x_mask, (z, z_p, m_p, logs_p) + + +class SynthesizerTrnMs256NSFsid_sim(nn.Module): + """ + Synthesizer for Training + """ + + def __init__( + self, + spec_channels, + segment_size, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + spk_embed_dim, + # hop_length, + gin_channels=0, + use_sdp=True, + **kwargs + ): + super().__init__() + self.spec_channels = spec_channels + self.inter_channels = inter_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.resblock = resblock + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.upsample_rates = upsample_rates + self.upsample_initial_channel = upsample_initial_channel + self.upsample_kernel_sizes = upsample_kernel_sizes + self.segment_size = segment_size + self.gin_channels = gin_channels + # self.hop_length = hop_length# + self.spk_embed_dim = spk_embed_dim + self.enc_p = TextEncoder256Sim( + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + ) + self.dec = GeneratorNSF( + inter_channels, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=gin_channels, + is_half=kwargs["is_half"], + ) + + self.flow = ResidualCouplingBlock( + inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels + ) + self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) + print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) + + def remove_weight_norm(self): + self.dec.remove_weight_norm() + self.flow.remove_weight_norm() + self.enc_q.remove_weight_norm() + + def forward( + self, phone, phone_lengths, pitch, pitchf, y_lengths, ds + ): # y是spec不需要了现在 + g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 + x, x_mask = self.enc_p(phone, pitch, phone_lengths) + x = self.flow(x, x_mask, g=g, reverse=True) + z_slice, ids_slice = commons.rand_slice_segments( + x, y_lengths, self.segment_size + ) + + pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size) + o = self.dec(z_slice, pitchf, g=g) + return o, ids_slice + + def infer( + self, phone, phone_lengths, pitch, pitchf, ds, max_len=None + ): # y是spec不需要了现在 + g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 + x, x_mask = self.enc_p(phone, pitch, phone_lengths) + x = self.flow(x, x_mask, g=g, reverse=True) + o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g) + return o, o + + +class MultiPeriodDiscriminator(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(MultiPeriodDiscriminator, self).__init__() + periods = [2, 3, 5, 7, 11, 17] + # periods = [3, 5, 7, 11, 17, 23, 37] + + discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] + discs = discs + [ + DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods + ] + self.discriminators = nn.ModuleList(discs) + + def forward(self, y, y_hat): + y_d_rs = [] # + y_d_gs = [] + fmap_rs = [] + fmap_gs = [] + for i, d in enumerate(self.discriminators): + y_d_r, fmap_r = d(y) + y_d_g, fmap_g = d(y_hat) + # for j in range(len(fmap_r)): + # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape) + y_d_rs.append(y_d_r) + y_d_gs.append(y_d_g) + fmap_rs.append(fmap_r) + fmap_gs.append(fmap_g) + + return y_d_rs, y_d_gs, fmap_rs, fmap_gs + + +class DiscriminatorS(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(DiscriminatorS, self).__init__() + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList( + [ + norm_f(Conv1d(1, 16, 15, 1, padding=7)), + norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), + norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), + norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), + norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), + norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), + ] + ) + self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) + + def forward(self, x): + fmap = [] + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap + + +class DiscriminatorP(torch.nn.Module): + def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): + super(DiscriminatorP, self).__init__() + self.period = period + self.use_spectral_norm = use_spectral_norm + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList( + [ + norm_f( + Conv2d( + 1, + 32, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 32, + 128, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 128, + 512, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 512, + 1024, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 1024, + 1024, + (kernel_size, 1), + 1, + padding=(get_padding(kernel_size, 1), 0), + ) + ), + ] + ) + self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) + + def forward(self, x): + fmap = [] + + # 1d to 2d + b, c, t = x.shape + if t % self.period != 0: # pad first + n_pad = self.period - (t % self.period) + x = F.pad(x, (0, n_pad), "reflect") + t = t + n_pad + x = x.view(b, c, t // self.period, self.period) + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap diff --git a/infer_pack/models_onnx.py b/infer_pack/models_onnx.py new file mode 100644 index 0000000000000000000000000000000000000000..3cdae2f7f8591a1e43b1d8520baa37b7e9744d72 --- /dev/null +++ b/infer_pack/models_onnx.py @@ -0,0 +1,849 @@ +import math, pdb, os +from time import time as ttime +import torch +from torch import nn +from torch.nn import functional as F +from infer_pack import modules +from infer_pack import attentions +from infer_pack import commons +from infer_pack.commons import init_weights, get_padding +from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d +from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm +from infer_pack.commons import init_weights +import numpy as np +from infer_pack import commons + + +class TextEncoder256(nn.Module): + def __init__( + self, + out_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + f0=True, + ): + super().__init__() + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.emb_phone = nn.Linear(256, hidden_channels) + self.lrelu = nn.LeakyReLU(0.1, inplace=True) + if f0 == True: + self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256 + self.encoder = attentions.Encoder( + hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout + ) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, phone, pitch, lengths): + if pitch == None: + x = self.emb_phone(phone) + else: + x = self.emb_phone(phone) + self.emb_pitch(pitch) + x = x * math.sqrt(self.hidden_channels) # [b, t, h] + x = self.lrelu(x) + x = torch.transpose(x, 1, -1) # [b, h, t] + x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( + x.dtype + ) + x = self.encoder(x * x_mask, x_mask) + stats = self.proj(x) * x_mask + + m, logs = torch.split(stats, self.out_channels, dim=1) + return m, logs, x_mask + + +class TextEncoder256Sim(nn.Module): + def __init__( + self, + out_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + f0=True, + ): + super().__init__() + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.emb_phone = nn.Linear(256, hidden_channels) + self.lrelu = nn.LeakyReLU(0.1, inplace=True) + if f0 == True: + self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256 + self.encoder = attentions.Encoder( + hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout + ) + self.proj = nn.Conv1d(hidden_channels, out_channels, 1) + + def forward(self, phone, pitch, lengths): + if pitch == None: + x = self.emb_phone(phone) + else: + x = self.emb_phone(phone) + self.emb_pitch(pitch) + x = x * math.sqrt(self.hidden_channels) # [b, t, h] + x = self.lrelu(x) + x = torch.transpose(x, 1, -1) # [b, h, t] + x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( + x.dtype + ) + x = self.encoder(x * x_mask, x_mask) + x = self.proj(x) * x_mask + return x, x_mask + + +class ResidualCouplingBlock(nn.Module): + def __init__( + self, + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + n_flows=4, + gin_channels=0, + ): + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.n_flows = n_flows + self.gin_channels = gin_channels + + self.flows = nn.ModuleList() + for i in range(n_flows): + self.flows.append( + modules.ResidualCouplingLayer( + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=gin_channels, + mean_only=True, + ) + ) + self.flows.append(modules.Flip()) + + def forward(self, x, x_mask, g=None, reverse=False): + if not reverse: + for flow in self.flows: + x, _ = flow(x, x_mask, g=g, reverse=reverse) + else: + for flow in reversed(self.flows): + x = flow(x, x_mask, g=g, reverse=reverse) + return x + + def remove_weight_norm(self): + for i in range(self.n_flows): + self.flows[i * 2].remove_weight_norm() + + +class PosteriorEncoder(nn.Module): + def __init__( + self, + in_channels, + out_channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=0, + ): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + + self.pre = nn.Conv1d(in_channels, hidden_channels, 1) + self.enc = modules.WN( + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=gin_channels, + ) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, x, x_lengths, g=None): + x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( + x.dtype + ) + x = self.pre(x) * x_mask + x = self.enc(x, x_mask, g=g) + stats = self.proj(x) * x_mask + m, logs = torch.split(stats, self.out_channels, dim=1) + z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask + return z, m, logs, x_mask + + def remove_weight_norm(self): + self.enc.remove_weight_norm() + + +class Generator(torch.nn.Module): + def __init__( + self, + initial_channel, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=0, + ): + super(Generator, self).__init__() + self.num_kernels = len(resblock_kernel_sizes) + self.num_upsamples = len(upsample_rates) + self.conv_pre = Conv1d( + initial_channel, upsample_initial_channel, 7, 1, padding=3 + ) + resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 + + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): + self.ups.append( + weight_norm( + ConvTranspose1d( + upsample_initial_channel // (2**i), + upsample_initial_channel // (2 ** (i + 1)), + k, + u, + padding=(k - u) // 2, + ) + ) + ) + + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = upsample_initial_channel // (2 ** (i + 1)) + for j, (k, d) in enumerate( + zip(resblock_kernel_sizes, resblock_dilation_sizes) + ): + self.resblocks.append(resblock(ch, k, d)) + + self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) + self.ups.apply(init_weights) + + if gin_channels != 0: + self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) + + def forward(self, x, g=None): + x = self.conv_pre(x) + if g is not None: + x = x + self.cond(g) + + for i in range(self.num_upsamples): + x = F.leaky_relu(x, modules.LRELU_SLOPE) + x = self.ups[i](x) + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i * self.num_kernels + j](x) + else: + xs += self.resblocks[i * self.num_kernels + j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + + return x + + def remove_weight_norm(self): + for l in self.ups: + remove_weight_norm(l) + for l in self.resblocks: + l.remove_weight_norm() + + +class SineGen(torch.nn.Module): + """Definition of sine generator + SineGen(samp_rate, harmonic_num = 0, + sine_amp = 0.1, noise_std = 0.003, + voiced_threshold = 0, + flag_for_pulse=False) + samp_rate: sampling rate in Hz + harmonic_num: number of harmonic overtones (default 0) + sine_amp: amplitude of sine-wavefrom (default 0.1) + noise_std: std of Gaussian noise (default 0.003) + voiced_thoreshold: F0 threshold for U/V classification (default 0) + flag_for_pulse: this SinGen is used inside PulseGen (default False) + Note: when flag_for_pulse is True, the first time step of a voiced + segment is always sin(np.pi) or cos(0) + """ + + def __init__( + self, + samp_rate, + harmonic_num=0, + sine_amp=0.1, + noise_std=0.003, + voiced_threshold=0, + flag_for_pulse=False, + ): + super(SineGen, self).__init__() + self.sine_amp = sine_amp + self.noise_std = noise_std + self.harmonic_num = harmonic_num + self.dim = self.harmonic_num + 1 + self.sampling_rate = samp_rate + self.voiced_threshold = voiced_threshold + + def _f02uv(self, f0): + # generate uv signal + uv = torch.ones_like(f0) + uv = uv * (f0 > self.voiced_threshold) + return uv + + def forward(self, f0, upp): + """sine_tensor, uv = forward(f0) + input F0: tensor(batchsize=1, length, dim=1) + f0 for unvoiced steps should be 0 + output sine_tensor: tensor(batchsize=1, length, dim) + output uv: tensor(batchsize=1, length, 1) + """ + with torch.no_grad(): + f0 = f0[:, None].transpose(1, 2) + f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device) + # fundamental component + f0_buf[:, :, 0] = f0[:, :, 0] + for idx in np.arange(self.harmonic_num): + f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * ( + idx + 2 + ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic + rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化 + rand_ini = torch.rand( + f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device + ) + rand_ini[:, 0] = 0 + rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini + tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化 + tmp_over_one *= upp + tmp_over_one = F.interpolate( + tmp_over_one.transpose(2, 1), + scale_factor=upp, + mode="linear", + align_corners=True, + ).transpose(2, 1) + rad_values = F.interpolate( + rad_values.transpose(2, 1), scale_factor=upp, mode="nearest" + ).transpose( + 2, 1 + ) ####### + tmp_over_one %= 1 + tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0 + cumsum_shift = torch.zeros_like(rad_values) + cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 + sine_waves = torch.sin( + torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi + ) + sine_waves = sine_waves * self.sine_amp + uv = self._f02uv(f0) + uv = F.interpolate( + uv.transpose(2, 1), scale_factor=upp, mode="nearest" + ).transpose(2, 1) + noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 + noise = noise_amp * torch.randn_like(sine_waves) + sine_waves = sine_waves * uv + noise + return sine_waves, uv, noise + + +class SourceModuleHnNSF(torch.nn.Module): + """SourceModule for hn-nsf + SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, + add_noise_std=0.003, voiced_threshod=0) + sampling_rate: sampling_rate in Hz + harmonic_num: number of harmonic above F0 (default: 0) + sine_amp: amplitude of sine source signal (default: 0.1) + add_noise_std: std of additive Gaussian noise (default: 0.003) + note that amplitude of noise in unvoiced is decided + by sine_amp + voiced_threshold: threhold to set U/V given F0 (default: 0) + Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) + F0_sampled (batchsize, length, 1) + Sine_source (batchsize, length, 1) + noise_source (batchsize, length 1) + uv (batchsize, length, 1) + """ + + def __init__( + self, + sampling_rate, + harmonic_num=0, + sine_amp=0.1, + add_noise_std=0.003, + voiced_threshod=0, + is_half=True, + ): + super(SourceModuleHnNSF, self).__init__() + + self.sine_amp = sine_amp + self.noise_std = add_noise_std + self.is_half = is_half + # to produce sine waveforms + self.l_sin_gen = SineGen( + sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod + ) + + # to merge source harmonics into a single excitation + self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) + self.l_tanh = torch.nn.Tanh() + + def forward(self, x, upp=None): + sine_wavs, uv, _ = self.l_sin_gen(x, upp) + if self.is_half: + sine_wavs = sine_wavs.half() + sine_merge = self.l_tanh(self.l_linear(sine_wavs)) + return sine_merge, None, None # noise, uv + + +class GeneratorNSF(torch.nn.Module): + def __init__( + self, + initial_channel, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels, + sr, + is_half=False, + ): + super(GeneratorNSF, self).__init__() + self.num_kernels = len(resblock_kernel_sizes) + self.num_upsamples = len(upsample_rates) + + self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates)) + self.m_source = SourceModuleHnNSF( + sampling_rate=sr, harmonic_num=0, is_half=is_half + ) + self.noise_convs = nn.ModuleList() + self.conv_pre = Conv1d( + initial_channel, upsample_initial_channel, 7, 1, padding=3 + ) + resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 + + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): + c_cur = upsample_initial_channel // (2 ** (i + 1)) + self.ups.append( + weight_norm( + ConvTranspose1d( + upsample_initial_channel // (2**i), + upsample_initial_channel // (2 ** (i + 1)), + k, + u, + padding=(k - u) // 2, + ) + ) + ) + if i + 1 < len(upsample_rates): + stride_f0 = np.prod(upsample_rates[i + 1 :]) + self.noise_convs.append( + Conv1d( + 1, + c_cur, + kernel_size=stride_f0 * 2, + stride=stride_f0, + padding=stride_f0 // 2, + ) + ) + else: + self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) + + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = upsample_initial_channel // (2 ** (i + 1)) + for j, (k, d) in enumerate( + zip(resblock_kernel_sizes, resblock_dilation_sizes) + ): + self.resblocks.append(resblock(ch, k, d)) + + self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) + self.ups.apply(init_weights) + + if gin_channels != 0: + self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) + + self.upp = np.prod(upsample_rates) + + def forward(self, x, f0, g=None): + har_source, noi_source, uv = self.m_source(f0, self.upp) + har_source = har_source.transpose(1, 2) + x = self.conv_pre(x) + if g is not None: + x = x + self.cond(g) + + for i in range(self.num_upsamples): + x = F.leaky_relu(x, modules.LRELU_SLOPE) + x = self.ups[i](x) + x_source = self.noise_convs[i](har_source) + x = x + x_source + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i * self.num_kernels + j](x) + else: + xs += self.resblocks[i * self.num_kernels + j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + return x + + def remove_weight_norm(self): + for l in self.ups: + remove_weight_norm(l) + for l in self.resblocks: + l.remove_weight_norm() + + +sr2sr = { + "32k": 32000, + "40k": 40000, + "48k": 48000, +} + + +class SynthesizerTrnMs256NSFsid(nn.Module): + def __init__( + self, + spec_channels, + segment_size, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + spk_embed_dim, + gin_channels, + sr, + **kwargs + ): + super().__init__() + if type(sr) == type("strr"): + sr = sr2sr[sr] + self.spec_channels = spec_channels + self.inter_channels = inter_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.resblock = resblock + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.upsample_rates = upsample_rates + self.upsample_initial_channel = upsample_initial_channel + self.upsample_kernel_sizes = upsample_kernel_sizes + self.segment_size = segment_size + self.gin_channels = gin_channels + # self.hop_length = hop_length# + self.spk_embed_dim = spk_embed_dim + self.enc_p = TextEncoder256( + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + ) + self.dec = GeneratorNSF( + inter_channels, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=gin_channels, + sr=sr, + is_half=kwargs["is_half"], + ) + self.enc_q = PosteriorEncoder( + spec_channels, + inter_channels, + hidden_channels, + 5, + 1, + 16, + gin_channels=gin_channels, + ) + self.flow = ResidualCouplingBlock( + inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels + ) + self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) + print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) + + def remove_weight_norm(self): + self.dec.remove_weight_norm() + self.flow.remove_weight_norm() + self.enc_q.remove_weight_norm() + + def forward(self, phone, phone_lengths, pitch, nsff0, sid, rnd, max_len=None): + g = self.emb_g(sid).unsqueeze(-1) + m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) + z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask + z = self.flow(z_p, x_mask, g=g, reverse=True) + o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g) + return o + + +class SynthesizerTrnMs256NSFsid_sim(nn.Module): + """ + Synthesizer for Training + """ + + def __init__( + self, + spec_channels, + segment_size, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + spk_embed_dim, + # hop_length, + gin_channels=0, + use_sdp=True, + **kwargs + ): + super().__init__() + self.spec_channels = spec_channels + self.inter_channels = inter_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.resblock = resblock + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.upsample_rates = upsample_rates + self.upsample_initial_channel = upsample_initial_channel + self.upsample_kernel_sizes = upsample_kernel_sizes + self.segment_size = segment_size + self.gin_channels = gin_channels + # self.hop_length = hop_length# + self.spk_embed_dim = spk_embed_dim + self.enc_p = TextEncoder256Sim( + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + ) + self.dec = GeneratorNSF( + inter_channels, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=gin_channels, + is_half=kwargs["is_half"], + ) + + self.flow = ResidualCouplingBlock( + inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels + ) + self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) + print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) + + def remove_weight_norm(self): + self.dec.remove_weight_norm() + self.flow.remove_weight_norm() + self.enc_q.remove_weight_norm() + + def forward( + self, phone, phone_lengths, pitch, pitchf, ds, max_len=None + ): # y是spec不需要了现在 + g = self.emb_g(ds.unsqueeze(0)).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 + x, x_mask = self.enc_p(phone, pitch, phone_lengths) + x = self.flow(x, x_mask, g=g, reverse=True) + o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g) + return o + + +class MultiPeriodDiscriminator(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(MultiPeriodDiscriminator, self).__init__() + periods = [2, 3, 5, 7, 11, 17] + # periods = [3, 5, 7, 11, 17, 23, 37] + + discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] + discs = discs + [ + DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods + ] + self.discriminators = nn.ModuleList(discs) + + def forward(self, y, y_hat): + y_d_rs = [] # + y_d_gs = [] + fmap_rs = [] + fmap_gs = [] + for i, d in enumerate(self.discriminators): + y_d_r, fmap_r = d(y) + y_d_g, fmap_g = d(y_hat) + # for j in range(len(fmap_r)): + # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape) + y_d_rs.append(y_d_r) + y_d_gs.append(y_d_g) + fmap_rs.append(fmap_r) + fmap_gs.append(fmap_g) + + return y_d_rs, y_d_gs, fmap_rs, fmap_gs + + +class DiscriminatorS(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(DiscriminatorS, self).__init__() + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList( + [ + norm_f(Conv1d(1, 16, 15, 1, padding=7)), + norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), + norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), + norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), + norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), + norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), + ] + ) + self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) + + def forward(self, x): + fmap = [] + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap + + +class DiscriminatorP(torch.nn.Module): + def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): + super(DiscriminatorP, self).__init__() + self.period = period + self.use_spectral_norm = use_spectral_norm + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList( + [ + norm_f( + Conv2d( + 1, + 32, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 32, + 128, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 128, + 512, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 512, + 1024, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 1024, + 1024, + (kernel_size, 1), + 1, + padding=(get_padding(kernel_size, 1), 0), + ) + ), + ] + ) + self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) + + def forward(self, x): + fmap = [] + + # 1d to 2d + b, c, t = x.shape + if t % self.period != 0: # pad first + n_pad = self.period - (t % self.period) + x = F.pad(x, (0, n_pad), "reflect") + t = t + n_pad + x = x.view(b, c, t // self.period, self.period) + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap diff --git a/infer_pack/modules.py b/infer_pack/modules.py new file mode 100644 index 0000000000000000000000000000000000000000..960481cedad9a6106f2bf0b9e86e82b120f7b33f --- /dev/null +++ b/infer_pack/modules.py @@ -0,0 +1,522 @@ +import copy +import math +import numpy as np +import scipy +import torch +from torch import nn +from torch.nn import functional as F + +from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d +from torch.nn.utils import weight_norm, remove_weight_norm + +from infer_pack import commons +from infer_pack.commons import init_weights, get_padding +from infer_pack.transforms import piecewise_rational_quadratic_transform + + +LRELU_SLOPE = 0.1 + + +class LayerNorm(nn.Module): + def __init__(self, channels, eps=1e-5): + super().__init__() + self.channels = channels + self.eps = eps + + self.gamma = nn.Parameter(torch.ones(channels)) + self.beta = nn.Parameter(torch.zeros(channels)) + + def forward(self, x): + x = x.transpose(1, -1) + x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) + return x.transpose(1, -1) + + +class ConvReluNorm(nn.Module): + def __init__( + self, + in_channels, + hidden_channels, + out_channels, + kernel_size, + n_layers, + p_dropout, + ): + super().__init__() + self.in_channels = in_channels + self.hidden_channels = hidden_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.p_dropout = p_dropout + assert n_layers > 1, "Number of layers should be larger than 0." + + self.conv_layers = nn.ModuleList() + self.norm_layers = nn.ModuleList() + self.conv_layers.append( + nn.Conv1d( + in_channels, hidden_channels, kernel_size, padding=kernel_size // 2 + ) + ) + self.norm_layers.append(LayerNorm(hidden_channels)) + self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout)) + for _ in range(n_layers - 1): + self.conv_layers.append( + nn.Conv1d( + hidden_channels, + hidden_channels, + kernel_size, + padding=kernel_size // 2, + ) + ) + self.norm_layers.append(LayerNorm(hidden_channels)) + self.proj = nn.Conv1d(hidden_channels, out_channels, 1) + self.proj.weight.data.zero_() + self.proj.bias.data.zero_() + + def forward(self, x, x_mask): + x_org = x + for i in range(self.n_layers): + x = self.conv_layers[i](x * x_mask) + x = self.norm_layers[i](x) + x = self.relu_drop(x) + x = x_org + self.proj(x) + return x * x_mask + + +class DDSConv(nn.Module): + """ + Dialted and Depth-Separable Convolution + """ + + def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0): + super().__init__() + self.channels = channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.p_dropout = p_dropout + + self.drop = nn.Dropout(p_dropout) + self.convs_sep = nn.ModuleList() + self.convs_1x1 = nn.ModuleList() + self.norms_1 = nn.ModuleList() + self.norms_2 = nn.ModuleList() + for i in range(n_layers): + dilation = kernel_size**i + padding = (kernel_size * dilation - dilation) // 2 + self.convs_sep.append( + nn.Conv1d( + channels, + channels, + kernel_size, + groups=channels, + dilation=dilation, + padding=padding, + ) + ) + self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) + self.norms_1.append(LayerNorm(channels)) + self.norms_2.append(LayerNorm(channels)) + + def forward(self, x, x_mask, g=None): + if g is not None: + x = x + g + for i in range(self.n_layers): + y = self.convs_sep[i](x * x_mask) + y = self.norms_1[i](y) + y = F.gelu(y) + y = self.convs_1x1[i](y) + y = self.norms_2[i](y) + y = F.gelu(y) + y = self.drop(y) + x = x + y + return x * x_mask + + +class WN(torch.nn.Module): + def __init__( + self, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=0, + p_dropout=0, + ): + super(WN, self).__init__() + assert kernel_size % 2 == 1 + self.hidden_channels = hidden_channels + self.kernel_size = (kernel_size,) + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + self.p_dropout = p_dropout + + self.in_layers = torch.nn.ModuleList() + self.res_skip_layers = torch.nn.ModuleList() + self.drop = nn.Dropout(p_dropout) + + if gin_channels != 0: + cond_layer = torch.nn.Conv1d( + gin_channels, 2 * hidden_channels * n_layers, 1 + ) + self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight") + + for i in range(n_layers): + dilation = dilation_rate**i + padding = int((kernel_size * dilation - dilation) / 2) + in_layer = torch.nn.Conv1d( + hidden_channels, + 2 * hidden_channels, + kernel_size, + dilation=dilation, + padding=padding, + ) + in_layer = torch.nn.utils.weight_norm(in_layer, name="weight") + self.in_layers.append(in_layer) + + # last one is not necessary + if i < n_layers - 1: + res_skip_channels = 2 * hidden_channels + else: + res_skip_channels = hidden_channels + + res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) + res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight") + self.res_skip_layers.append(res_skip_layer) + + def forward(self, x, x_mask, g=None, **kwargs): + output = torch.zeros_like(x) + n_channels_tensor = torch.IntTensor([self.hidden_channels]) + + if g is not None: + g = self.cond_layer(g) + + for i in range(self.n_layers): + x_in = self.in_layers[i](x) + if g is not None: + cond_offset = i * 2 * self.hidden_channels + g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] + else: + g_l = torch.zeros_like(x_in) + + acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) + acts = self.drop(acts) + + res_skip_acts = self.res_skip_layers[i](acts) + if i < self.n_layers - 1: + res_acts = res_skip_acts[:, : self.hidden_channels, :] + x = (x + res_acts) * x_mask + output = output + res_skip_acts[:, self.hidden_channels :, :] + else: + output = output + res_skip_acts + return output * x_mask + + def remove_weight_norm(self): + if self.gin_channels != 0: + torch.nn.utils.remove_weight_norm(self.cond_layer) + for l in self.in_layers: + torch.nn.utils.remove_weight_norm(l) + for l in self.res_skip_layers: + torch.nn.utils.remove_weight_norm(l) + + +class ResBlock1(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): + super(ResBlock1, self).__init__() + self.convs1 = nn.ModuleList( + [ + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[2], + padding=get_padding(kernel_size, dilation[2]), + ) + ), + ] + ) + self.convs1.apply(init_weights) + + self.convs2 = nn.ModuleList( + [ + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ) + ), + ] + ) + self.convs2.apply(init_weights) + + def forward(self, x, x_mask=None): + for c1, c2 in zip(self.convs1, self.convs2): + xt = F.leaky_relu(x, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c1(xt) + xt = F.leaky_relu(xt, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c2(xt) + x = xt + x + if x_mask is not None: + x = x * x_mask + return x + + def remove_weight_norm(self): + for l in self.convs1: + remove_weight_norm(l) + for l in self.convs2: + remove_weight_norm(l) + + +class ResBlock2(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3)): + super(ResBlock2, self).__init__() + self.convs = nn.ModuleList( + [ + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]), + ) + ), + ] + ) + self.convs.apply(init_weights) + + def forward(self, x, x_mask=None): + for c in self.convs: + xt = F.leaky_relu(x, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c(xt) + x = xt + x + if x_mask is not None: + x = x * x_mask + return x + + def remove_weight_norm(self): + for l in self.convs: + remove_weight_norm(l) + + +class Log(nn.Module): + def forward(self, x, x_mask, reverse=False, **kwargs): + if not reverse: + y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask + logdet = torch.sum(-y, [1, 2]) + return y, logdet + else: + x = torch.exp(x) * x_mask + return x + + +class Flip(nn.Module): + def forward(self, x, *args, reverse=False, **kwargs): + x = torch.flip(x, [1]) + if not reverse: + logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) + return x, logdet + else: + return x + + +class ElementwiseAffine(nn.Module): + def __init__(self, channels): + super().__init__() + self.channels = channels + self.m = nn.Parameter(torch.zeros(channels, 1)) + self.logs = nn.Parameter(torch.zeros(channels, 1)) + + def forward(self, x, x_mask, reverse=False, **kwargs): + if not reverse: + y = self.m + torch.exp(self.logs) * x + y = y * x_mask + logdet = torch.sum(self.logs * x_mask, [1, 2]) + return y, logdet + else: + x = (x - self.m) * torch.exp(-self.logs) * x_mask + return x + + +class ResidualCouplingLayer(nn.Module): + def __init__( + self, + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + p_dropout=0, + gin_channels=0, + mean_only=False, + ): + assert channels % 2 == 0, "channels should be divisible by 2" + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.half_channels = channels // 2 + self.mean_only = mean_only + + self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) + self.enc = WN( + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + p_dropout=p_dropout, + gin_channels=gin_channels, + ) + self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) + self.post.weight.data.zero_() + self.post.bias.data.zero_() + + def forward(self, x, x_mask, g=None, reverse=False): + x0, x1 = torch.split(x, [self.half_channels] * 2, 1) + h = self.pre(x0) * x_mask + h = self.enc(h, x_mask, g=g) + stats = self.post(h) * x_mask + if not self.mean_only: + m, logs = torch.split(stats, [self.half_channels] * 2, 1) + else: + m = stats + logs = torch.zeros_like(m) + + if not reverse: + x1 = m + x1 * torch.exp(logs) * x_mask + x = torch.cat([x0, x1], 1) + logdet = torch.sum(logs, [1, 2]) + return x, logdet + else: + x1 = (x1 - m) * torch.exp(-logs) * x_mask + x = torch.cat([x0, x1], 1) + return x + + def remove_weight_norm(self): + self.enc.remove_weight_norm() + + +class ConvFlow(nn.Module): + def __init__( + self, + in_channels, + filter_channels, + kernel_size, + n_layers, + num_bins=10, + tail_bound=5.0, + ): + super().__init__() + self.in_channels = in_channels + self.filter_channels = filter_channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.num_bins = num_bins + self.tail_bound = tail_bound + self.half_channels = in_channels // 2 + + self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) + self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0) + self.proj = nn.Conv1d( + filter_channels, self.half_channels * (num_bins * 3 - 1), 1 + ) + self.proj.weight.data.zero_() + self.proj.bias.data.zero_() + + def forward(self, x, x_mask, g=None, reverse=False): + x0, x1 = torch.split(x, [self.half_channels] * 2, 1) + h = self.pre(x0) + h = self.convs(h, x_mask, g=g) + h = self.proj(h) * x_mask + + b, c, t = x0.shape + h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] + + unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels) + unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt( + self.filter_channels + ) + unnormalized_derivatives = h[..., 2 * self.num_bins :] + + x1, logabsdet = piecewise_rational_quadratic_transform( + x1, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=reverse, + tails="linear", + tail_bound=self.tail_bound, + ) + + x = torch.cat([x0, x1], 1) * x_mask + logdet = torch.sum(logabsdet * x_mask, [1, 2]) + if not reverse: + return x, logdet + else: + return x diff --git a/infer_pack/transforms.py b/infer_pack/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..a11f799e023864ff7082c1f49c0cc18351a13b47 --- /dev/null +++ b/infer_pack/transforms.py @@ -0,0 +1,209 @@ +import torch +from torch.nn import functional as F + +import numpy as np + + +DEFAULT_MIN_BIN_WIDTH = 1e-3 +DEFAULT_MIN_BIN_HEIGHT = 1e-3 +DEFAULT_MIN_DERIVATIVE = 1e-3 + + +def piecewise_rational_quadratic_transform( + inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + tails=None, + tail_bound=1.0, + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE, +): + if tails is None: + spline_fn = rational_quadratic_spline + spline_kwargs = {} + else: + spline_fn = unconstrained_rational_quadratic_spline + spline_kwargs = {"tails": tails, "tail_bound": tail_bound} + + outputs, logabsdet = spline_fn( + inputs=inputs, + unnormalized_widths=unnormalized_widths, + unnormalized_heights=unnormalized_heights, + unnormalized_derivatives=unnormalized_derivatives, + inverse=inverse, + min_bin_width=min_bin_width, + min_bin_height=min_bin_height, + min_derivative=min_derivative, + **spline_kwargs + ) + return outputs, logabsdet + + +def searchsorted(bin_locations, inputs, eps=1e-6): + bin_locations[..., -1] += eps + return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1 + + +def unconstrained_rational_quadratic_spline( + inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + tails="linear", + tail_bound=1.0, + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE, +): + inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) + outside_interval_mask = ~inside_interval_mask + + outputs = torch.zeros_like(inputs) + logabsdet = torch.zeros_like(inputs) + + if tails == "linear": + unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1)) + constant = np.log(np.exp(1 - min_derivative) - 1) + unnormalized_derivatives[..., 0] = constant + unnormalized_derivatives[..., -1] = constant + + outputs[outside_interval_mask] = inputs[outside_interval_mask] + logabsdet[outside_interval_mask] = 0 + else: + raise RuntimeError("{} tails are not implemented.".format(tails)) + + ( + outputs[inside_interval_mask], + logabsdet[inside_interval_mask], + ) = rational_quadratic_spline( + inputs=inputs[inside_interval_mask], + unnormalized_widths=unnormalized_widths[inside_interval_mask, :], + unnormalized_heights=unnormalized_heights[inside_interval_mask, :], + unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], + inverse=inverse, + left=-tail_bound, + right=tail_bound, + bottom=-tail_bound, + top=tail_bound, + min_bin_width=min_bin_width, + min_bin_height=min_bin_height, + min_derivative=min_derivative, + ) + + return outputs, logabsdet + + +def rational_quadratic_spline( + inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + left=0.0, + right=1.0, + bottom=0.0, + top=1.0, + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE, +): + if torch.min(inputs) < left or torch.max(inputs) > right: + raise ValueError("Input to a transform is not within its domain") + + num_bins = unnormalized_widths.shape[-1] + + if min_bin_width * num_bins > 1.0: + raise ValueError("Minimal bin width too large for the number of bins") + if min_bin_height * num_bins > 1.0: + raise ValueError("Minimal bin height too large for the number of bins") + + widths = F.softmax(unnormalized_widths, dim=-1) + widths = min_bin_width + (1 - min_bin_width * num_bins) * widths + cumwidths = torch.cumsum(widths, dim=-1) + cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0) + cumwidths = (right - left) * cumwidths + left + cumwidths[..., 0] = left + cumwidths[..., -1] = right + widths = cumwidths[..., 1:] - cumwidths[..., :-1] + + derivatives = min_derivative + F.softplus(unnormalized_derivatives) + + heights = F.softmax(unnormalized_heights, dim=-1) + heights = min_bin_height + (1 - min_bin_height * num_bins) * heights + cumheights = torch.cumsum(heights, dim=-1) + cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0) + cumheights = (top - bottom) * cumheights + bottom + cumheights[..., 0] = bottom + cumheights[..., -1] = top + heights = cumheights[..., 1:] - cumheights[..., :-1] + + if inverse: + bin_idx = searchsorted(cumheights, inputs)[..., None] + else: + bin_idx = searchsorted(cumwidths, inputs)[..., None] + + input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] + input_bin_widths = widths.gather(-1, bin_idx)[..., 0] + + input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] + delta = heights / widths + input_delta = delta.gather(-1, bin_idx)[..., 0] + + input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] + input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] + + input_heights = heights.gather(-1, bin_idx)[..., 0] + + if inverse: + a = (inputs - input_cumheights) * ( + input_derivatives + input_derivatives_plus_one - 2 * input_delta + ) + input_heights * (input_delta - input_derivatives) + b = input_heights * input_derivatives - (inputs - input_cumheights) * ( + input_derivatives + input_derivatives_plus_one - 2 * input_delta + ) + c = -input_delta * (inputs - input_cumheights) + + discriminant = b.pow(2) - 4 * a * c + assert (discriminant >= 0).all() + + root = (2 * c) / (-b - torch.sqrt(discriminant)) + outputs = root * input_bin_widths + input_cumwidths + + theta_one_minus_theta = root * (1 - root) + denominator = input_delta + ( + (input_derivatives + input_derivatives_plus_one - 2 * input_delta) + * theta_one_minus_theta + ) + derivative_numerator = input_delta.pow(2) * ( + input_derivatives_plus_one * root.pow(2) + + 2 * input_delta * theta_one_minus_theta + + input_derivatives * (1 - root).pow(2) + ) + logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) + + return outputs, -logabsdet + else: + theta = (inputs - input_cumwidths) / input_bin_widths + theta_one_minus_theta = theta * (1 - theta) + + numerator = input_heights * ( + input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta + ) + denominator = input_delta + ( + (input_derivatives + input_derivatives_plus_one - 2 * input_delta) + * theta_one_minus_theta + ) + outputs = input_cumheights + numerator / denominator + + derivative_numerator = input_delta.pow(2) * ( + input_derivatives_plus_one * theta.pow(2) + + 2 * input_delta * theta_one_minus_theta + + input_derivatives * (1 - theta).pow(2) + ) + logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) + + return outputs, logabsdet diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..b243da1ac682a0fc91a238ec48fba2cedc5cb4d0 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,46 @@ +numba==0.56.4 +numpy==1.23.5 +scipy==1.9.3 +librosa==0.9.2 +llvmlite==0.39.0 +fairseq==0.12.2 +faiss-cpu==1.7.0; sys_platform == "darwin" +faiss-cpu==1.7.2; sys_platform != "darwin" +gradio +Cython +future>=0.18.3 +pydub>=0.25.1 +soundfile>=0.12.1 +ffmpeg-python>=0.2.0 +tensorboardX +functorch>=2.0.0 +Jinja2>=3.1.2 +json5>=0.9.11 +Markdown +matplotlib>=3.7.1 +matplotlib-inline>=0.1.6 +praat-parselmouth>=0.4.3 +Pillow>=9.1.1 +pyworld==0.3.2 +resampy>=0.4.2 +scikit-learn>=1.2.2 +starlette>=0.26.1 +tensorboard +tensorboard-data-server +tensorboard-plugin-wit +torchgen>=0.0.1 +tqdm>=4.65.0 +tornado>=6.2 +Werkzeug>=2.2.3 +uc-micro-py>=1.0.1 +sympy>=1.11.1 +tabulate>=0.9.0 +PyYAML>=6.0 +pyasn1>=0.4.8 +pyasn1-modules>=0.2.8 +fsspec>=2023.3.0 +absl-py>=1.4.0 +audioread +uvicorn>=0.21.1 +colorama>=0.4.6 +edge-tts diff --git a/vc_infer_pipeline.py b/vc_infer_pipeline.py new file mode 100644 index 0000000000000000000000000000000000000000..c26d45068f9b6bf2b194b13c3c89f8a06347c124 --- /dev/null +++ b/vc_infer_pipeline.py @@ -0,0 +1,306 @@ +import numpy as np, parselmouth, torch, pdb +from time import time as ttime +import torch.nn.functional as F +from config import x_pad, x_query, x_center, x_max +import scipy.signal as signal +import pyworld, os, traceback, faiss +from scipy import signal + +bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000) + + +class VC(object): + def __init__(self, tgt_sr, device, is_half): + self.sr = 16000 # hubert输入采样率 + self.window = 160 # 每帧点数 + self.t_pad = self.sr * x_pad # 每条前后pad时间 + self.t_pad_tgt = tgt_sr * x_pad + self.t_pad2 = self.t_pad * 2 + self.t_query = self.sr * x_query # 查询切点前后查询时间 + self.t_center = self.sr * x_center # 查询切点位置 + self.t_max = self.sr * x_max # 免查询时长阈值 + self.device = device + self.is_half = is_half + + def get_f0(self, x, p_len, f0_up_key, f0_method, inp_f0=None): + time_step = self.window / self.sr * 1000 + f0_min = 50 + f0_max = 1100 + f0_mel_min = 1127 * np.log(1 + f0_min / 700) + f0_mel_max = 1127 * np.log(1 + f0_max / 700) + if f0_method == "pm": + f0 = ( + parselmouth.Sound(x, self.sr) + .to_pitch_ac( + time_step=time_step / 1000, + voicing_threshold=0.6, + pitch_floor=f0_min, + pitch_ceiling=f0_max, + ) + .selected_array["frequency"] + ) + pad_size = (p_len - len(f0) + 1) // 2 + if pad_size > 0 or p_len - len(f0) - pad_size > 0: + f0 = np.pad( + f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" + ) + elif f0_method == "harvest": + f0, t = pyworld.harvest( + x.astype(np.double), + fs=self.sr, + f0_ceil=f0_max, + f0_floor=f0_min, + frame_period=10, + ) + f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr) + f0 = signal.medfilt(f0, 3) + f0 *= pow(2, f0_up_key / 12) + # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) + tf0 = self.sr // self.window # 每秒f0点数 + if inp_f0 is not None: + delta_t = np.round( + (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1 + ).astype("int16") + replace_f0 = np.interp( + list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1] + ) + shape = f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)].shape[0] + f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)] = replace_f0[:shape] + # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) + f0bak = f0.copy() + f0_mel = 1127 * np.log(1 + f0 / 700) + f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( + f0_mel_max - f0_mel_min + ) + 1 + f0_mel[f0_mel <= 1] = 1 + f0_mel[f0_mel > 255] = 255 + f0_coarse = np.rint(f0_mel).astype(np.int) + return f0_coarse, f0bak # 1-0 + + def vc( + self, + model, + net_g, + sid, + audio0, + pitch, + pitchf, + times, + index, + big_npy, + index_rate, + ): # ,file_index,file_big_npy + feats = torch.from_numpy(audio0) + if self.is_half: + feats = feats.half() + else: + feats = feats.float() + if feats.dim() == 2: # double channels + feats = feats.mean(-1) + assert feats.dim() == 1, feats.dim() + feats = feats.view(1, -1) + padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) + + inputs = { + "source": feats.to(self.device), + "padding_mask": padding_mask, + "output_layer": 9, # layer 9 + } + t0 = ttime() + with torch.no_grad(): + logits = model.extract_features(**inputs) + feats = model.final_proj(logits[0]) + + if ( + isinstance(index, type(None)) == False + and isinstance(big_npy, type(None)) == False + and index_rate != 0 + ): + npy = feats[0].cpu().numpy() + if self.is_half: + npy = npy.astype("float32") + _, I = index.search(npy, 1) + npy = big_npy[I.squeeze()] + if self.is_half: + npy = npy.astype("float16") + feats = ( + torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate + + (1 - index_rate) * feats + ) + + feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) + t1 = ttime() + p_len = audio0.shape[0] // self.window + if feats.shape[1] < p_len: + p_len = feats.shape[1] + if pitch != None and pitchf != None: + pitch = pitch[:, :p_len] + pitchf = pitchf[:, :p_len] + p_len = torch.tensor([p_len], device=self.device).long() + with torch.no_grad(): + if pitch != None and pitchf != None: + audio1 = ( + (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768) + .data.cpu() + .float() + .numpy() + .astype(np.int16) + ) + else: + audio1 = ( + (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768) + .data.cpu() + .float() + .numpy() + .astype(np.int16) + ) + del feats, p_len, padding_mask + if torch.cuda.is_available(): + torch.cuda.empty_cache() + t2 = ttime() + times[0] += t1 - t0 + times[2] += t2 - t1 + return audio1 + + def pipeline( + self, + model, + net_g, + sid, + audio, + times, + f0_up_key, + f0_method, + file_index, + file_big_npy, + index_rate, + if_f0, + f0_file=None, + ): + if ( + file_big_npy != "" + and file_index != "" + and os.path.exists(file_big_npy) == True + and os.path.exists(file_index) == True + and index_rate != 0 + ): + try: + index = faiss.read_index(file_index) + big_npy = np.load(file_big_npy) + except: + traceback.print_exc() + index = big_npy = None + else: + index = big_npy = None + print("Feature retrieval library doesn't exist or ratio is 0") + audio = signal.filtfilt(bh, ah, audio) + audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect") + opt_ts = [] + if audio_pad.shape[0] > self.t_max: + audio_sum = np.zeros_like(audio) + for i in range(self.window): + audio_sum += audio_pad[i : i - self.window] + for t in range(self.t_center, audio.shape[0], self.t_center): + opt_ts.append( + t + - self.t_query + + np.where( + np.abs(audio_sum[t - self.t_query : t + self.t_query]) + == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min() + )[0][0] + ) + s = 0 + audio_opt = [] + t = None + t1 = ttime() + audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect") + p_len = audio_pad.shape[0] // self.window + inp_f0 = None + if hasattr(f0_file, "name") == True: + try: + with open(f0_file.name, "r") as f: + lines = f.read().strip("\n").split("\n") + inp_f0 = [] + for line in lines: + inp_f0.append([float(i) for i in line.split(",")]) + inp_f0 = np.array(inp_f0, dtype="float32") + except: + traceback.print_exc() + sid = torch.tensor(sid, device=self.device).unsqueeze(0).long() + pitch, pitchf = None, None + if if_f0 == 1: + pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key, f0_method, inp_f0) + pitch = pitch[:p_len] + pitchf = pitchf[:p_len] + pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long() + pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float() + t2 = ttime() + times[1] += t2 - t1 + for t in opt_ts: + t = t // self.window * self.window + if if_f0 == 1: + audio_opt.append( + self.vc( + model, + net_g, + sid, + audio_pad[s : t + self.t_pad2 + self.window], + pitch[:, s // self.window : (t + self.t_pad2) // self.window], + pitchf[:, s // self.window : (t + self.t_pad2) // self.window], + times, + index, + big_npy, + index_rate, + )[self.t_pad_tgt : -self.t_pad_tgt] + ) + else: + audio_opt.append( + self.vc( + model, + net_g, + sid, + audio_pad[s : t + self.t_pad2 + self.window], + None, + None, + times, + index, + big_npy, + index_rate, + )[self.t_pad_tgt : -self.t_pad_tgt] + ) + s = t + if if_f0 == 1: + audio_opt.append( + self.vc( + model, + net_g, + sid, + audio_pad[t:], + pitch[:, t // self.window :] if t is not None else pitch, + pitchf[:, t // self.window :] if t is not None else pitchf, + times, + index, + big_npy, + index_rate, + )[self.t_pad_tgt : -self.t_pad_tgt] + ) + else: + audio_opt.append( + self.vc( + model, + net_g, + sid, + audio_pad[t:], + None, + None, + times, + index, + big_npy, + index_rate, + )[self.t_pad_tgt : -self.t_pad_tgt] + ) + audio_opt = np.concatenate(audio_opt) + del pitch, pitchf, sid + if torch.cuda.is_available(): + torch.cuda.empty_cache() + return audio_opt diff --git a/weights/aerith/aerith.pth b/weights/aerith/aerith.pth new file mode 100644 index 0000000000000000000000000000000000000000..3740b1d9e434e4f04296453a071e79dbbe108bee --- /dev/null +++ b/weights/aerith/aerith.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5a48069f99a8a9ac36f49f4c26b326047f3ef08ad2ee367eb613c33f677f7f76 +size 55019812 diff --git a/weights/aerith/cover.jpg b/weights/aerith/cover.jpg new file mode 100644 index 0000000000000000000000000000000000000000..84fc785fe84370a4238b123622fc96f2c6dc378f --- /dev/null +++ b/weights/aerith/cover.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dae381373d0551a92baa4b935f468aaa3c4122146c0fcb6e0a9b8bcc9c87ae09 +size 60564 diff --git a/weights/aerith/total_fea.npy b/weights/aerith/total_fea.npy new file mode 100644 index 0000000000000000000000000000000000000000..fb8690ef1087d8895df41c4c5bbd8342fd08e94d --- /dev/null +++ b/weights/aerith/total_fea.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:af1060120437bbef7c2262b765001bfde11f29e558a81c2ab9eba45a4f12124b +size 157080704 diff --git a/weights/aerith/trained_IVF3933_Flat_nprobe_1.index b/weights/aerith/trained_IVF3933_Flat_nprobe_1.index new file mode 100644 index 0000000000000000000000000000000000000000..b4ba596bbdb6771b8ed40ce77c273da72c99913d --- /dev/null +++ b/weights/aerith/trained_IVF3933_Flat_nprobe_1.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:441e4e28785789852fe07d2def5a73de529f7f55febd12c1e6aeaf088ddcf510 +size 4027531 diff --git a/weights/anji/added_IVF198_Flat_nprobe_4.index b/weights/anji/added_IVF198_Flat_nprobe_4.index new file mode 100644 index 0000000000000000000000000000000000000000..aff5d671125b5d94ffb44043f7b1818d5d62549b --- /dev/null +++ b/weights/anji/added_IVF198_Flat_nprobe_4.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8d41d1d39681fcc1e75677c12a62c43152f75f4babe9d8cac388337e1fc01928 +size 8180803 diff --git a/weights/anji/anji.pth b/weights/anji/anji.pth new file mode 100644 index 0000000000000000000000000000000000000000..2fef0481fd74c76f6642ea82a4540ffa714aa725 --- /dev/null +++ b/weights/anji/anji.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5b6e515669e4136454e9c2389ee1e652522367207b887af5e7ff8f2898a84071 +size 54996174 diff --git a/weights/anji/cover.png b/weights/anji/cover.png new file mode 100644 index 0000000000000000000000000000000000000000..69d1e081bc51fd6281a70733058b7458e635319d --- /dev/null +++ b/weights/anji/cover.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a2e45812206fd4759f463708a5b0116160b8c259828ce8c27fb935f9a9c13e6f +size 134888 diff --git a/weights/anji/total_fea.npy b/weights/anji/total_fea.npy new file mode 100644 index 0000000000000000000000000000000000000000..b10a2ca5d46edaa8e3a238aa112ad30400d67120 --- /dev/null +++ b/weights/anji/total_fea.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ecf716918f39267cccb40a1084c43929d87e8f261db09b301bb5d53d11ca43e1 +size 7914624 diff --git a/weights/ariana/added_IVF133_Flat_nprobe_4.index b/weights/ariana/added_IVF133_Flat_nprobe_4.index new file mode 100644 index 0000000000000000000000000000000000000000..63ced4dd25ba2914cbcd9a0b1be732ff460273c2 --- /dev/null +++ b/weights/ariana/added_IVF133_Flat_nprobe_4.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ad5f3716c084d211285ed6d42fd0aa3e4e67eeb2b412e815af70c2d7d08ee4ac +size 5503795 diff --git a/weights/ariana/ariana.pth b/weights/ariana/ariana.pth new file mode 100644 index 0000000000000000000000000000000000000000..64baf1678d551174efa00ce5b5c7b37bdf220cce --- /dev/null +++ b/weights/ariana/ariana.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b34d5fd9a2c94c1878e0fb8ac4294588b71355db2e848aba1f87be02cbeb8ac6 +size 55019812 diff --git a/weights/ariana/cover.png b/weights/ariana/cover.png new file mode 100644 index 0000000000000000000000000000000000000000..7392cfe7597b374e155d94b6088d74e8bb04797d --- /dev/null +++ b/weights/ariana/cover.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:174dd27d1af1cb66e8a711b168456e83398a033f7ccbfd4765a90f0bbdf4d4d8 +size 150526 diff --git a/weights/ariana/total_fea.npy b/weights/ariana/total_fea.npy new file mode 100644 index 0000000000000000000000000000000000000000..156b82fce2cf50d5a360d58be19eff75ab377755 --- /dev/null +++ b/weights/ariana/total_fea.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b73e8a628b102e5ee9990d7553ee5cf406511339c39ab21a67f0323116edcc90 +size 5324928 diff --git a/weights/ayaka-jp/added_IVF415_Flat_nprobe_6.index b/weights/ayaka-jp/added_IVF415_Flat_nprobe_6.index new file mode 100644 index 0000000000000000000000000000000000000000..d91aa1e4bedfbde4dba33cbface22865c53593be --- /dev/null +++ b/weights/ayaka-jp/added_IVF415_Flat_nprobe_6.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:98a4411fb7fbe94d4878df2cc1351f15e3c0c67ac22a7671700653e82dd24373 +size 17155075 diff --git a/weights/ayaka-jp/ayaka-jp.pth b/weights/ayaka-jp/ayaka-jp.pth new file mode 100644 index 0000000000000000000000000000000000000000..bca6bc15df5238ac2a748391a01c975952844e7b --- /dev/null +++ b/weights/ayaka-jp/ayaka-jp.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:633efdfcf421aeb3ae4df55dd6c17d1570a48b48bff6eaede078492c20d0e0f6 +size 55027130 diff --git a/weights/ayaka-jp/cover.png b/weights/ayaka-jp/cover.png new file mode 100644 index 0000000000000000000000000000000000000000..eea64959df3fd0988b023f9efb526124c174f93e Binary files /dev/null and b/weights/ayaka-jp/cover.png differ diff --git a/weights/ayaka-jp/total_fea.npy b/weights/ayaka-jp/total_fea.npy new file mode 100644 index 0000000000000000000000000000000000000000..800f04c04696d823f635168eb287cc54fa13bd1f --- /dev/null +++ b/weights/ayaka-jp/total_fea.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:36cda9528a9782c44637380dce3dad6e05ed27efcb94fc511dcbc66e9ab852c1 +size 16597120 diff --git a/weights/childe-jp/added_IVF428_Flat_nprobe_6.index b/weights/childe-jp/added_IVF428_Flat_nprobe_6.index new file mode 100644 index 0000000000000000000000000000000000000000..d9c6476f50cae7bce3da01999ad8fc40f58fcaac --- /dev/null +++ b/weights/childe-jp/added_IVF428_Flat_nprobe_6.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4801f410ada2c2447c783db9160b414f73ebd12d7fa456a351bae3c7727120d8 +size 17688619 diff --git a/weights/childe-jp/childe-jp.pth b/weights/childe-jp/childe-jp.pth new file mode 100644 index 0000000000000000000000000000000000000000..3c273d8af3e4f2ffd96e674e713c9967bd02d3aa --- /dev/null +++ b/weights/childe-jp/childe-jp.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8c50bbeb4094fb622f74fc3481e0807e049092709ae4b877d266ab0be45303f9 +size 55027589 diff --git a/weights/childe-jp/cover.png b/weights/childe-jp/cover.png new file mode 100644 index 0000000000000000000000000000000000000000..2d8a667a5f6a3b7b24a310be32378a2ff7ea1bc7 --- /dev/null +++ b/weights/childe-jp/cover.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:89f4a95e7a1fc11a5fcc066f97129871cfe5067ac9a9061181e73fbb475f188d +size 3703090 diff --git a/weights/childe-jp/total_fea.npy b/weights/childe-jp/total_fea.npy new file mode 100644 index 0000000000000000000000000000000000000000..3c5ce6ae905c6ae610a7eb48fd1acdcba733e436 --- /dev/null +++ b/weights/childe-jp/total_fea.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9ea1a5a8674a3122afa6f23c728c555eebfe6501700033754e47c25404167ee7 +size 17113216 diff --git a/weights/hutao-jp/added_IVF265_Flat_nprobe_5.index b/weights/hutao-jp/added_IVF265_Flat_nprobe_5.index new file mode 100644 index 0000000000000000000000000000000000000000..b11623d9924d8f802bb4dcb6aa4e12bc4d557720 --- /dev/null +++ b/weights/hutao-jp/added_IVF265_Flat_nprobe_5.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1250005b613d5ffb368da9f93fbde733074757cdba9fb1fd04aa1f286b883e0a +size 10962043 diff --git a/weights/hutao-jp/cover.png b/weights/hutao-jp/cover.png new file mode 100644 index 0000000000000000000000000000000000000000..2679b51ee930530f9b541a16c884d5985814eb8c --- /dev/null +++ b/weights/hutao-jp/cover.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4d7f42be2e382feec5ed0345196473715ef5be0c9ac68628dc77e75fae0e7316 +size 6616541 diff --git a/weights/hutao-jp/hutao-jp.pth b/weights/hutao-jp/hutao-jp.pth new file mode 100644 index 0000000000000000000000000000000000000000..75c2dd4bc0448275dc059299dca3d9c31a5a679f --- /dev/null +++ b/weights/hutao-jp/hutao-jp.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:52ae0bd715c555b8e0072bc98bf4b462aab42b93a48307652e7a9164a0539990 +size 55027130 diff --git a/weights/hutao-jp/total_fea.npy b/weights/hutao-jp/total_fea.npy new file mode 100644 index 0000000000000000000000000000000000000000..bf396316f4cb1eabab289f6749d7959ac5856c49 --- /dev/null +++ b/weights/hutao-jp/total_fea.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7e6c6687b5d0881113a54ca53b0486292538853c6a6488c702bf94d991b7aec5 +size 10605696 diff --git a/weights/kazuha-jp/added_IVF677_Flat_nprobe_7.index b/weights/kazuha-jp/added_IVF677_Flat_nprobe_7.index new file mode 100644 index 0000000000000000000000000000000000000000..932bd064bf70acaadc761da45a986ae7c1426552 --- /dev/null +++ b/weights/kazuha-jp/added_IVF677_Flat_nprobe_7.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:47d1f762e5d990d317ee7fb7d18190a37d6a7169ededd726b912b013c67fa20f +size 27970435 diff --git a/weights/kazuha-jp/cover.png b/weights/kazuha-jp/cover.png new file mode 100644 index 0000000000000000000000000000000000000000..afe44007a48d63de51cbffc9b5e62fd073c14a2d --- /dev/null +++ b/weights/kazuha-jp/cover.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:db361de17f6d33684be140dfedd74794dec79b85df97ba7595b3755680139f57 +size 5805839 diff --git a/weights/kazuha-jp/kazuha-jp.pth b/weights/kazuha-jp/kazuha-jp.pth new file mode 100644 index 0000000000000000000000000000000000000000..7507702fe3bf2b6c8ec207add11c65b5e19b6c22 --- /dev/null +++ b/weights/kazuha-jp/kazuha-jp.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d69c9c77250cff7c47a74de33ac11089ccc41122f7a5461b77f14f28738dd7e7 +size 55027589 diff --git a/weights/kazuha-jp/total_fea.npy b/weights/kazuha-jp/total_fea.npy new file mode 100644 index 0000000000000000000000000000000000000000..968b678ead5fe3f2163a08541fe825eb3e2d8e60 --- /dev/null +++ b/weights/kazuha-jp/total_fea.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2f8bd3cc84c5e8230f4631dac4839b922f0b4e726b325813bc75773e19a2f19f +size 27060352 diff --git a/weights/klee-jp/added_IVF282_Flat_nprobe_5.index b/weights/klee-jp/added_IVF282_Flat_nprobe_5.index new file mode 100644 index 0000000000000000000000000000000000000000..f3de57e253545ac0fa97bde6e448dc24f71a8382 --- /dev/null +++ b/weights/klee-jp/added_IVF282_Flat_nprobe_5.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3bfb669f7b701d8bebb49660eaa50b6cfb1bae59d43e82ad054f1ffed73fcac2 +size 11671027 diff --git a/weights/klee-jp/cover.png b/weights/klee-jp/cover.png new file mode 100644 index 0000000000000000000000000000000000000000..0da6b6af0eb1d9e11a917ee007215dfdaa00222b --- /dev/null +++ b/weights/klee-jp/cover.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c30ca76b76807992b11f27ee49d0f1aa80ac81da6c9b1b60d2d2a3e75f609752 +size 3242773 diff --git a/weights/klee-jp/klee-jp.pth b/weights/klee-jp/klee-jp.pth new file mode 100644 index 0000000000000000000000000000000000000000..a3377722569ccc0f6364052f799d9240d4ae0e90 --- /dev/null +++ b/weights/klee-jp/klee-jp.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:054e796c9c1214d400847e51cfc25f0f39bfd50437d1e8f001051d426303bbea +size 55026095 diff --git a/weights/klee-jp/total_fea.npy b/weights/klee-jp/total_fea.npy new file mode 100644 index 0000000000000000000000000000000000000000..f330c0cb715f633160b567ad03927694a283329e --- /dev/null +++ b/weights/klee-jp/total_fea.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:070407ecc7c8b125c8f68723d579c5e002b37e21ec85cda096000f5c18b56bb0 +size 11291776 diff --git a/weights/marel/added_IVF418_Flat_nprobe_1.index b/weights/marel/added_IVF418_Flat_nprobe_1.index new file mode 100644 index 0000000000000000000000000000000000000000..ba0423e616648f7ba2337d24877a3f8b157b993e --- /dev/null +++ b/weights/marel/added_IVF418_Flat_nprobe_1.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a3a1f733c91fdee1225a45709f793857f8c9d10feb3e1cae198f30d861ee6f79 +size 17259307 diff --git a/weights/marel/cover.jpg b/weights/marel/cover.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a10b7977482f0300f60a1399eca61a4771609cd6 --- /dev/null +++ b/weights/marel/cover.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:69ce879214842dd113d3bca7da1767a2f21437d8c47c183b606e161ae231d389 +size 66401 diff --git a/weights/marel/marel.pth b/weights/marel/marel.pth new file mode 100644 index 0000000000000000000000000000000000000000..7646f58c9fadc91dd1a11a6c12470007ec172574 --- /dev/null +++ b/weights/marel/marel.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9aa536260d45d2aec4636208300a7099ae3189f1f0ae5cb12f6db93db785905a +size 54996633 diff --git a/weights/marel/total_fea.npy b/weights/marel/total_fea.npy new file mode 100644 index 0000000000000000000000000000000000000000..dc25cbeb5effd2185ab880bd3b1f0920a8b130a2 --- /dev/null +++ b/weights/marel/total_fea.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:86578a4f7e2f2637c6ab9b45439d266a199da7909737c7cefe25bc8ab06af09b +size 16697472 diff --git a/weights/model_info.json b/weights/model_info.json new file mode 100644 index 0000000000000000000000000000000000000000..7b3fa335edb7cd899345ab1ef1f29113db5a7606 --- /dev/null +++ b/weights/model_info.json @@ -0,0 +1,155 @@ +{ + "ayaka-jp": { + "enable": true, + "name": "ayaka-jp", + "title": "Genshin Impact - Kamisato Ayaka", + "cover": "cover.png", + "feature_retrieval_library": "added_IVF415_Flat_nprobe_6.index", + "feature_file": "total_fea.npy", + "author":"Ardha" + }, + "klee-jp": { + "enable": false, + "name": "klee-jp", + "title": "Genshin Impact - Klee", + "cover": "cover.png", + "feature_retrieval_library": "added_IVF282_Flat_nprobe_5.index", + "feature_file": "total_fea.npy", + "author":"Ardha" + }, + "nahida-jp": { + "enable": true, + "name": "nahida-jp", + "title": "Genshin Impact - Nahida", + "cover": "cover.png", + "feature_retrieval_library": "added_IVF265_Flat_nprobe_5.index", + "feature_file": "total_fea.npy", + "author":"Ardha" + }, + "hutao-jp": { + "enable": true, + "name": "hutao-jp", + "title": "Genshin Impact - Hutao", + "cover": "cover.png", + "feature_retrieval_library": "added_IVF265_Flat_nprobe_5.index", + "feature_file": "total_fea.npy", + "author":"Ardha" + }, + "raiden-jp": { + "enable": false, + "name": "raiden-jp", + "title": "Genshin Impact - Raiden", + "cover": "cover.png", + "feature_retrieval_library": "added_IVF783_Flat_nprobe_7.index", + "feature_file": "total_fea.npy", + "author":"Ardha" + }, + "yae-jp": { + "enable": false, + "name": "yae-jp", + "title": "Genshin Impact - Yae Miko", + "cover": "cover.png", + "feature_retrieval_library": "added_IVF935_Flat_nprobe_1.index", + "feature_file": "total_fea.npy", + "author":"Ardha" + }, + "kazuha-jp": { + "enable": false, + "name": "kazuha-jp", + "title": "Genshin Impact - Kazuha", + "cover": "cover.png", + "feature_retrieval_library": "added_IVF677_Flat_nprobe_7.index", + "feature_file": "total_fea.npy", + "author":"Ardha" + }, + "childe-jp": { + "enable": false, + "name": "childe-jp", + "title": "Genshin Impact - Childe", + "cover": "cover.png", + "feature_retrieval_library": "added_IVF428_Flat_nprobe_6.index", + "feature_file": "total_fea.npy", + "author":"Ardha" + }, + "wanderer-jp": { + "enable": true, + "name": "wanderer-jp", + "title": "Genshin Impact - Wanderer", + "cover": "cover.png", + "feature_retrieval_library": "added_IVF128_Flat_nprobe_4.index", + "feature_file": "total_fea.npy", + "author":"Ardha" + }, + "xiao-jp": { + "enable": true, + "name": "xiao-jp", + "title": "Genshin Impact - Xiao", + "cover": "cover.png", + "feature_retrieval_library": "added_IVF233_Flat_nprobe_5.index", + "feature_file": "total_fea.npy", + "author":"Ardha" + }, + "noah": { + "enable": false, + "name": "noah", + "title": "Ariel Noah", + "cover": "cover.jpeg", + "feature_retrieval_library": "added_IVF467_Flat_nprobe_6.index", + "feature_file": "total_fea.npy", + "author":"Ardha" + }, + "anji": { + "enable": false, + "name": "anji", + "title": "Anji Manji", + "cover": "cover.jpeg", + "feature_retrieval_library": "added_IVF198_Flat_nprobe_4.index", + "feature_file": "total_fea.npy", + "author":"Ardha" + }, + "ariana": { + "enable": false, + "name": "ariana", + "title": "Ariana Grande", + "cover": "cover.jpeg", + "feature_retrieval_library": "added_IVF133_Flat_nprobe_4.index", + "feature_file": "total_fea.npy", + "author":"Ardha" + }, + "once": { + "enable": false, + "name": "once", + "title": "Once", + "cover": "cover.jpeg", + "feature_retrieval_library": "added_IVF229_Flat_nprobe_5.index", + "feature_file": "total_fea.npy", + "author":"Ardha" + }, + "rie": { + "enable": false, + "name": "rie", + "title": "Rie Tanaka", + "cover": "cover.png", + "feature_retrieval_library": "added_IVF325_Flat_nprobe_5.index", + "feature_file": "total_fea.npy", + "author":"Ardha" + }, + "aerith": { + "enable": false, + "name": "aerith", + "title": "Aerith", + "cover": "cover.jpg", + "feature_retrieval_library": "trained_IVF3933_Flat_nprobe_1_5.index", + "feature_file": "total_fea.npy", + "author":"Ardha" + }, + "marel": { + "enable": false, + "name": "marel", + "title": "Marel", + "cover": "cover.jpg", + "feature_retrieval_library": "added_IVF418_Flat_nprobe_1.index", + "feature_file": "total_fea.npy", + "author":"Ardha" + } +} \ No newline at end of file diff --git a/weights/nahida-jp/added_IVF265_Flat_nprobe_5.index b/weights/nahida-jp/added_IVF265_Flat_nprobe_5.index new file mode 100644 index 0000000000000000000000000000000000000000..6f8a20c89e5d9c77ed2d9c0e9290d919717eea29 --- /dev/null +++ b/weights/nahida-jp/added_IVF265_Flat_nprobe_5.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:223ac68eca791ce8ce7aaa4f56fcf3d7ddd9e5145f709a017191b0c9720daead +size 10942435 diff --git a/weights/nahida-jp/cover.png b/weights/nahida-jp/cover.png new file mode 100644 index 0000000000000000000000000000000000000000..162a0f6a2eb70db75f6deff67fac3a3c99c26f14 --- /dev/null +++ b/weights/nahida-jp/cover.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a40241729e26adf2d3500fd74e1a9fb082ef52578bf5dd7af4534aeac6089108 +size 5963743 diff --git a/weights/nahida-jp/nahida-jp.pth b/weights/nahida-jp/nahida-jp.pth new file mode 100644 index 0000000000000000000000000000000000000000..9186a0873944daebe3c4153fbfd0ae39477be3c3 --- /dev/null +++ b/weights/nahida-jp/nahida-jp.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c598ebc6b4a2f2f4dfb5a9e46851ffd2e20b9f8adf2743fc88db11fc3836748c +size 55027589 diff --git a/weights/nahida-jp/total_fea.npy b/weights/nahida-jp/total_fea.npy new file mode 100644 index 0000000000000000000000000000000000000000..9c60e76c88f8e2a575a35a4e49dbe5a0788af918 --- /dev/null +++ b/weights/nahida-jp/total_fea.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8552383d1feae96bdea2008261709de4ffd9ae2beebafcf519d3fe8f1e18b598 +size 10586240 diff --git a/weights/noah/added_IVF467_Flat_nprobe_6.index b/weights/noah/added_IVF467_Flat_nprobe_6.index new file mode 100644 index 0000000000000000000000000000000000000000..82942508ef29faf5c1c647eabc9364909ade5b35 --- /dev/null +++ b/weights/noah/added_IVF467_Flat_nprobe_6.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:77041cda88b55e9802cedf397180ef33997ecf699351dd635b228eaae2fd2af7 +size 19308859 diff --git a/weights/noah/cover.jpeg b/weights/noah/cover.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..534e2c4438bb1a0ce80fb9a9f7ecf635704f954f --- /dev/null +++ b/weights/noah/cover.jpeg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:50e4cd38a3c267d29bcda4e8ab7b273c1e464576f873ce5be66d6577f3a8e65e +size 94089 diff --git a/weights/noah/noah.pth b/weights/noah/noah.pth new file mode 100644 index 0000000000000000000000000000000000000000..353f7cb99a5d432aabe5fd5506c4853245e6d60c --- /dev/null +++ b/weights/noah/noah.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:33f9f6921122f8b17f654a3cbfb9603b34322e1926266eb83234f82f93621591 +size 54996174 diff --git a/weights/noah/total_fea.npy b/weights/noah/total_fea.npy new file mode 100644 index 0000000000000000000000000000000000000000..23416715aa1c3d5e9f49a3c0e827fd8ab7c79ccd --- /dev/null +++ b/weights/noah/total_fea.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:09aee5e9e07a14ad1fc2f985a40bf863202eb3f761742a3bd8dc96583da760fb +size 18680960 diff --git a/weights/once/added_IVF229_Flat_nprobe_5.index b/weights/once/added_IVF229_Flat_nprobe_5.index new file mode 100644 index 0000000000000000000000000000000000000000..98417651558ea37aaf69af5c3eb0177fb53c71be --- /dev/null +++ b/weights/once/added_IVF229_Flat_nprobe_5.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:77c02a7e9383a50c90fe1b76affb9b5d9295a4dc5e5be39e2a259697e0d73ffc +size 9462547 diff --git a/weights/once/cover.png b/weights/once/cover.png new file mode 100644 index 0000000000000000000000000000000000000000..74f79e001fec73f428eb5a986a4d4d716be70eae --- /dev/null +++ b/weights/once/cover.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7af320bfc7eaa4a56d2bb53f0ea0ed5090b49c7b2bc4255c0645c11c7879b65c +size 156793 diff --git a/weights/once/once.pth b/weights/once/once.pth new file mode 100644 index 0000000000000000000000000000000000000000..a511c77bab54b18ac9f467ec1b96fc9fd9af5a1c --- /dev/null +++ b/weights/once/once.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9f25a962acafb1ab21a75ccd31de5c6d9e0e5ee798b955db9b68e6af221094c8 +size 54996174 diff --git a/weights/once/total_fea.npy b/weights/once/total_fea.npy new file mode 100644 index 0000000000000000000000000000000000000000..1f7792ac8dc6565fe2f21d774c61ed625636252e --- /dev/null +++ b/weights/once/total_fea.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6e87fab1e8b01a7e36e2a85ffa3d5409acc4488bb2b39fa25093a954c0c2afe4 +size 9154688 diff --git a/weights/raiden-jp/added_IVF783_Flat_nprobe_7.index b/weights/raiden-jp/added_IVF783_Flat_nprobe_7.index new file mode 100644 index 0000000000000000000000000000000000000000..cdb04b02df5f6207adf94b394daca67773280427 --- /dev/null +++ b/weights/raiden-jp/added_IVF783_Flat_nprobe_7.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:71e9568b307152547c45653c6e464a991223071933858047cb81cfbd9fbb9679 +size 32349211 diff --git a/weights/raiden-jp/cover.png b/weights/raiden-jp/cover.png new file mode 100644 index 0000000000000000000000000000000000000000..9715577da3f3267dff2762a50ef2de39e18a4c4e --- /dev/null +++ b/weights/raiden-jp/cover.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ae435b5488b7ba6f911616e9fa8d3b4d4d8f61ea687af1f23f6083b7d9067ee7 +size 8036189 diff --git a/weights/raiden-jp/raiden-jp.pth b/weights/raiden-jp/raiden-jp.pth new file mode 100644 index 0000000000000000000000000000000000000000..1b119e9d8aa2a1fb863921524aad52701d394486 --- /dev/null +++ b/weights/raiden-jp/raiden-jp.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7483e661b095a272b0c0fb7aa77075c7359d087c8d3e3ee8c362985a3d96fdd1 +size 55027589 diff --git a/weights/raiden-jp/total_fea.npy b/weights/raiden-jp/total_fea.npy new file mode 100644 index 0000000000000000000000000000000000000000..07ce56cea533116472165f886944ac6096cd926f --- /dev/null +++ b/weights/raiden-jp/total_fea.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1374d1575f9ed5145bb7ea1d093c48ebe6142b9d0ea10c7ad0fc8ac3c8d1993a +size 31296640 diff --git a/weights/rie/added_IVF325_Flat_nprobe_5.index b/weights/rie/added_IVF325_Flat_nprobe_5.index new file mode 100644 index 0000000000000000000000000000000000000000..4fc219ced421ac26acd75b070d9ea5118d80fa57 --- /dev/null +++ b/weights/rie/added_IVF325_Flat_nprobe_5.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:48706594d859e8507dca5d5c2f4ef4d562db4a0e08fd3ce5ba0eed7aac37bb2b +size 13433683 diff --git a/weights/rie/cover.png b/weights/rie/cover.png new file mode 100644 index 0000000000000000000000000000000000000000..9aa3138d4abcaf92da468f725c8fb0bfd3c1ec10 --- /dev/null +++ b/weights/rie/cover.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d792dac4de11b2edac471fda4f884b7208aa200229f8bd4e4b421cfee8797a3c +size 5249626 diff --git a/weights/rie/rie.pth b/weights/rie/rie.pth new file mode 100644 index 0000000000000000000000000000000000000000..981b0da5cd184faec5d6efe8e5d70f151411bb6b --- /dev/null +++ b/weights/rie/rie.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4186068ec5adb2dc8b3f514520b55df645f6b27e1d118315300ce29d56b0f5ec +size 54995587 diff --git a/weights/rie/total_fea.npy b/weights/rie/total_fea.npy new file mode 100644 index 0000000000000000000000000000000000000000..4b730cd957efaad10b1b029585aab848413998d6 --- /dev/null +++ b/weights/rie/total_fea.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f0c3156802e2d80b14aa36c2b97fb0f5bf77ea5e6bfa47bf8c80acc2d34b0c3e +size 12996736 diff --git a/weights/wanderer-jp/added_IVF128_Flat_nprobe_4.index b/weights/wanderer-jp/added_IVF128_Flat_nprobe_4.index new file mode 100644 index 0000000000000000000000000000000000000000..ce54db39fe85ac939452aadd69cc1741f5bcd9fc --- /dev/null +++ b/weights/wanderer-jp/added_IVF128_Flat_nprobe_4.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6642c9a48863247025fd9fb09e8de4ffa220ef659dff1a4a297c57bd08cf1ec4 +size 5314939 diff --git a/weights/wanderer-jp/cover.png b/weights/wanderer-jp/cover.png new file mode 100644 index 0000000000000000000000000000000000000000..3a85da4b70e37855f15f4bb546e220c58971c6d4 --- /dev/null +++ b/weights/wanderer-jp/cover.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:af68ce227760b354d3c204b38589d328623ed869973d16db05daef784026526a +size 12522761 diff --git a/weights/wanderer-jp/total_fea.npy b/weights/wanderer-jp/total_fea.npy new file mode 100644 index 0000000000000000000000000000000000000000..aca280acfcac1c9f65b4c22637d24c32e8ec2127 --- /dev/null +++ b/weights/wanderer-jp/total_fea.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:edccbafbaa8512f9970686d305eb10b4ff5f9d79ca7118d3158b8699aac1975e +size 5142656 diff --git a/weights/wanderer-jp/wanderer-jp.pth b/weights/wanderer-jp/wanderer-jp.pth new file mode 100644 index 0000000000000000000000000000000000000000..7f03d9fd91a830477f37ecd7cbab2abf20bd454b --- /dev/null +++ b/weights/wanderer-jp/wanderer-jp.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7d2d89c3cac427a5ae0439b2cd635015f20e8d4e1d2d6c0af39daa44f6c02890 +size 55028507 diff --git a/weights/xiao-jp/added_IVF233_Flat_nprobe_5.index b/weights/xiao-jp/added_IVF233_Flat_nprobe_5.index new file mode 100644 index 0000000000000000000000000000000000000000..a5ae5974faffe91e6980205ad1d36e26972b22c6 --- /dev/null +++ b/weights/xiao-jp/added_IVF233_Flat_nprobe_5.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:65c124d9021bf14703a4b4446f86dc0356f8ab43c46b99efdaab183ccb42ccf8 +size 9641083 diff --git a/weights/xiao-jp/cover.png b/weights/xiao-jp/cover.png new file mode 100644 index 0000000000000000000000000000000000000000..02234b440e411f22104dc245100ea2f96e2e9154 --- /dev/null +++ b/weights/xiao-jp/cover.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:de0e9f3dfa8c1e5266fd519fc23e7365d06c1375caa47e4cc7cfcda4d1e26888 +size 10456216 diff --git a/weights/xiao-jp/total_fea.npy b/weights/xiao-jp/total_fea.npy new file mode 100644 index 0000000000000000000000000000000000000000..42737c93b5ebc486dc64ecf2f80933acd9cf8cdf --- /dev/null +++ b/weights/xiao-jp/total_fea.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3650e806c3e9098c4a836d138c141b2d387351765317721d2331ff3428361fbe +size 9327744 diff --git a/weights/xiao-jp/xiao-jp.pth b/weights/xiao-jp/xiao-jp.pth new file mode 100644 index 0000000000000000000000000000000000000000..8c3e534232a678288a9dd7e073027e83609e89bc --- /dev/null +++ b/weights/xiao-jp/xiao-jp.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4f85bf34a96dffe7dcaec4fb434f0ca1ed08b56784ac9ab88545ab2df8b66e1a +size 55026095 diff --git a/weights/yae-jp/added_IVF935_Flat_nprobe_1.index b/weights/yae-jp/added_IVF935_Flat_nprobe_1.index new file mode 100644 index 0000000000000000000000000000000000000000..4a1e7575b0220604e14317af55c7f1eb2ba43567 --- /dev/null +++ b/weights/yae-jp/added_IVF935_Flat_nprobe_1.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f82e237ac49c261015c5159e4335f001653a5d3622ce7d7be95533060052314c +size 38622739 diff --git a/weights/yae-jp/cover.png b/weights/yae-jp/cover.png new file mode 100644 index 0000000000000000000000000000000000000000..651702b26b79bce9931189d481291405fb80afcc --- /dev/null +++ b/weights/yae-jp/cover.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8b1f7e1b6fa0dde40ed9cc4b9a0ad6296f8a890c23c73dc897ea8f6734d74be6 +size 5027456 diff --git a/weights/yae-jp/total_fea.npy b/weights/yae-jp/total_fea.npy new file mode 100644 index 0000000000000000000000000000000000000000..b04f7ca3c44b29c737fd93f69694069d4461a216 --- /dev/null +++ b/weights/yae-jp/total_fea.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8e89f702186c72b99d4821ef641c4a057a335b5c0a273cc04e06a48ab9981151 +size 37365888 diff --git a/weights/yae-jp/yae-jp.pth b/weights/yae-jp/yae-jp.pth new file mode 100644 index 0000000000000000000000000000000000000000..7b4d5c92816307cea3b9bdea6a03dcf49f76e41f --- /dev/null +++ b/weights/yae-jp/yae-jp.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cdab6dbf1c3d045c872822b21e780fa6c8037cf88288d216abe8d69c3b02b8b1 +size 54995587