File size: 19,516 Bytes
0a4421d bea8151 7cb0b54 0933474 7f0bd23 7cb0b54 7f0bd23 4e27a59 0933474 7cb0b54 0933474 4e27a59 7f0bd23 e621926 0a4421d e621926 4e27a59 ca6fa71 e621926 dd90e5c 4e27a59 e621926 0a4421d e621926 4e27a59 e621926 4e27a59 e621926 b9f4efc 4e27a59 e621926 6b95b0d 4e27a59 e621926 4e27a59 e621926 ca6fa71 4e27a59 ca6fa71 e621926 4e27a59 ca6fa71 e621926 ca6fa71 e621926 ca6fa71 0a4421d 0933474 7c0b89e bea8151 0933474 bea8151 0933474 7c0b89e 0933474 7c0b89e 0933474 7c0b89e 0933474 7cb0b54 0933474 7cb0b54 0933474 4e27a59 0933474 4e27a59 0933474 7c0b89e 4e27a59 027506b 4e27a59 027506b 0a4421d 027506b 0933474 fd93f39 027506b fd93f39 027506b 7cb0b54 027506b 7f0bd23 027506b 0a4421d 027506b 7c0b89e 0a4421d 027506b 7cb0b54 0933474 b9f4efc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import gradio as gr
import os
import random
import modules.constants as constants
import modules.version_info as version_info
import modules.storage as storage
import urllib.request
from urllib.parse import urlparse, parse_qs, urlencode
user_dir = constants.TMPDIR
default_folder = "saved_models/3d_model_" + format(random.randint(1, 999999), "06d")
def _resolve_short_id_to_query_params(query_params: dict) -> dict:
"""
Checks for a 'sid' (short ID) in query_params. If found, attempts to resolve
it to a full URL and updates query_params with the parameters ('3d', 'hm', 'image')
from the resolved URL.
"""
short_id = query_params.get("sid")
if short_id:
status, full_url_from_shortener = storage.gen_full_url(
short_url=short_id,
repo_id=constants.HF_REPO_ID,
json_file=constants.SHORTENER_JSON_FILE
)
if status == "success_retrieved_full" and full_url_from_shortener:
print(f"Retrieved full URL from short ID '{short_id}': {full_url_from_shortener}")
try:
parsed_full_url = urlparse(full_url_from_shortener)
retrieved_params = parse_qs(parsed_full_url.query)
# Update query_params with those from the full_url_from_shortener
# The parse_qs function returns lists for values, so get the first element.
# If a param is not in the resolved URL, it will be set to None.
query_params["3d"] = retrieved_params.get("3d", [None])[0]
query_params["hm"] = retrieved_params.get("hm", [None])[0]
query_params["image"] = retrieved_params.get("image", [None])[0]
except Exception as e:
print(f"Error parsing full URL from shortener: {e}")
# Proceed with original query_params if parsing fails (i.e., don't overwrite them with Nones here)
else:
print(f"Failed to retrieve full URL for short ID '{short_id}': {status}")
# If sid resolution fails, original query_params (including potentially 3d, hm, image if passed alongside sid) remain.
return query_params
def getVersions():
#return html_versions
return version_info.versions_html()
# Process URLs and download files if needed.
def process_url(url, default_ext=".png"):
"""Download file from URL if it's a remote URL and return its local path.
Performs HuggingFace authentication if the URL requires it.
The caller can pass an appropriate default_ext (e.g. ".glb" for models).
Uses huggingface_hub library for HuggingFace URLs for better authentication.
"""
if not url:
return None
# If it's already a local file, return it.
if os.path.exists(url) or not (url.startswith('http://') or url.startswith('https://')):
return url
# Parse URL to get components
try:
# Create filename from URL.
parsed_url = urlparse(url)
filename = os.path.basename(parsed_url.path)
if not filename:
filename = f"downloaded_{hash(url) % 10000}.file"
# Add extension if missing.
ext = os.path.splitext(filename)[1].lower()
if not ext:
filename += default_ext
# Create local path.
local_path = os.path.join(constants.TMPDIR, filename)
# If the file is hosted on HuggingFace, use huggingface_hub
if 'huggingface.co' in url or 'hf.co' in url:
try:
from huggingface_hub import login, hf_hub_download
# Log in to HuggingFace
login(token=constants.HF_API_TOKEN)
# Extract repo information from URL
# Format: https://huggingface.co/datasets/{repo_id}/resolve/main/{path}
if '/datasets/' in url and '/resolve/main/' in url:
parts = url.split('/datasets/')[1].split('/resolve/main/')
repo_id = parts[0]
# The remaining path may contain subfolders and filename
full_path = parts[1]
# Extract the filename and subfolder
if '/' in full_path:
subfolder, filename = full_path.rsplit('/', 1)
else:
subfolder = None
filename = full_path
print(f"Downloading from HF repo '{repo_id}', filename '{filename}', subfolder '{subfolder}'")
# Download using huggingface_hub
local_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
repo_type="dataset",
local_dir=constants.TMPDIR,
local_dir_use_symlinks=False
)
return local_path
else:
# Fall back to standard download for other HF URLs
print("URL format not recognized for huggingface_hub download, falling back to standard method")
except Exception as e:
print(f"Error using huggingface_hub download: {e}, falling back to standard method")
# Standard download for non-HF URLs or as fallback
print(f"Downloading {url} to {local_path}")
urllib.request.urlretrieve(url, local_path)
return local_path
except Exception as e:
print(f"Error downloading file {url}: {e}")
return url # Return original URL if download fails
def load_data(request: gr.Request, model_3d, image_slider):
"""
Load data from query parameters, download files if needed,
and use current component values as defaults if no query parameters are provided.
If query parameters are provided, generate a permalink using storage.generate_permalink_from_urls.
Parameters:
request: Gradio request object containing query parameters.
model_3d: Current value or component for the 3D model.
image_slider: Current value or component for the image slider.
Returns:
tuple: (model_url, slider_images, permalink)
- model_url: processed URL for the 3D model.
- slider_images: processed list of image URLs.
- permalink: a generated permalink if query parameters were provided,
or an empty string if not.
"""
# Parse query parameters.
query_params = dict(request.query_params) if request is not None else {}
# Resolve short ID if present
query_params = _resolve_short_id_to_query_params(query_params)
# Extract URLs from query parameters (which may have been updated)
short_id = query_params.get("sid", None)
model_url = query_params.get("3d", None)
hm_url = query_params.get("hm", None)
img_url = query_params.get("image", None)
# If 'sid' was passed but didn't resolve, or no params were passed, then model_url, hm_url, img_url will be None.
has_loadable_params = bool(model_url or hm_url or img_url)
# Process the model URL if provided.
if model_url:
model_url = process_url(model_url, default_ext=".glb")
# Process image URLs if provided.
slider_images = []
if img_url:
local_img = process_url(img_url, default_ext=".png")
if local_img:
slider_images.append(local_img)
if hm_url:
local_hm = process_url(hm_url, default_ext=".png")
if local_hm:
if not slider_images or local_hm != slider_images[0]:
if len(slider_images) == 1 and img_url:
slider_images.append(local_hm)
else:
slider_images = [local_hm] + slider_images
slider_images = slider_images[:2]
# Set default values if no URLs provided or processed:
default_model_val = getattr(model_3d, "value", model_3d)
default_images_val = getattr(image_slider, "value", image_slider)
if not slider_images:
slider_images = default_images_val if default_images_val and default_images_val != (None, None) else constants.default_slider_images
if not model_url:
model_url = default_model_val if default_model_val else constants.default_model_3d
# If any loadable query parameters were effectively present (either directly or via sid), generate a permalink.
permalink = ""
permalink_short = ""
if has_loadable_params:
# Generate permalink using the processed URLs.
try:
permalink_model_url = query_params.get("3d", model_url)
permalink_hm_url = query_params.get("hm", hm_url if len(slider_images) > 1 and hm_url else (slider_images[1] if len(slider_images) > 1 else None) )
permalink_img_url = query_params.get("image", img_url if slider_images and img_url else (slider_images[0] if slider_images else None) )
permalink = storage.generate_permalink_from_urls(permalink_model_url, permalink_hm_url, permalink_img_url)
if not short_id:
# If no short ID was provided, generate a new one.
result, short_id = storage.gen_full_url(full_url=permalink, repo_id=constants.HF_REPO_ID, json_file=constants.SHORTENER_JSON_FILE)
permalink_short = f"{constants.APP_BASE_URL}/?sid={short_id}"
print(f"Generated permalink: {result} (short ID: {short_id})")
except Exception as e:
print(f"Error generating permalink: {e}")
return model_url, slider_images, permalink, permalink_short
def process_upload(files, current_model, current_images):
"""
Process uploaded files and assign them to the appropriate component based on file extension.
Files with extensions in [".glb", ".gltf", ".obj", ".ply"] are sent to the Model3D component.
Files with extensions in [".png", ".jpg", ".jpeg"] are sent to the ImageSlider component.
The function merges the uploaded files with current data. If a file for a component is not
provided in the upload (i.e. not exactly 1 model file or not exactly 2 image files), then the
original data will be retained for that component. If an upload is provided, it will replace
the corresponding value.
For the ImageSlider, if a single image is provided in the upload, it will update only the first
image slot, leaving the second slot unchanged.
"""
extracted_model = None
extracted_images = []
# Ensure files is a list.
if not isinstance(files, list):
files = [files]
for f in files:
# f can be a file path (string) or an object with attribute `name`
file_name = f.name if hasattr(f, "name") else f
ext = os.path.splitext(file_name)[1].lower()
if ext in constants.model_extensions:
if extracted_model is None:
extracted_model = file_name
elif ext in constants.image_extensions:
if len(extracted_images) < 2:
extracted_images.append(file_name)
# Merge results with current data.
updated_model = extracted_model if extracted_model is not None else current_model
# Convert current_images if it's a tuple or a single item.
if isinstance(current_images, tuple):
current_images = list(current_images)
elif current_images is not None and not isinstance(current_images, list):
current_images = [current_images]
# For the image slider, we expect a list of exactly 2 images.
# Start with current images (or use defaults if None).
if current_images is None or not isinstance(current_images, list) or len(current_images) == 0:
new_images = [None, None]
else:
new_images = current_images[:2]
if len(new_images) < 2:
new_images.append(None)
if len(extracted_images) == 1:
new_images[0] = extracted_images[0]
elif len(extracted_images) == 2:
new_images[0] = extracted_images[0]
new_images[1] = extracted_images[1]
return updated_model, new_images
def get_open_graph_meta_tags(query_params):
"""Generates Open Graph meta tags based on query parameters."""
og_title = constants.DEFAULT_OG_TITLE
og_description = constants.DEFAULT_OG_DESCRIPTION
og_image = constants.DEFAULT_OG_IMAGE_URL
og_type = constants.DEFAULT_OG_TYPE
og_url = constants.APP_BASE_URL
img_url_from_query = query_params.get("image")
if img_url_from_query:
og_image = img_url_from_query
model_url_from_query = query_params.get("3d")
if model_url_from_query:
try:
model_filename = os.path.basename(urlparse(model_url_from_query).path)
if model_filename:
og_title = f"3D Viewer: {model_filename}"
else:
og_title = f"Shared 3D Model"
except Exception:
og_title = "Shared 3D Model"
else:
og_title = "Shared Image"
if query_params:
filtered_query_params = {k: v for k, v in query_params.items() if v is not None}
if filtered_query_params:
og_url += "?" + urlencode(filtered_query_params)
meta_tags = f'''
<meta property="og:title" content="{og_title}" />
<meta property="og:description" content="{og_description}" />
<meta property="og:image" content="{og_image}" />
<meta property="og:url" content="{og_url}" />
<meta property="og:type" content="{og_type}" />
<meta name="twitter:card" content="summary_large_image">
<meta name="twitter:title" content="{og_title}">
<meta name="twitter:description" content="{og_description}">
<meta name="twitter:image" content="{og_image}">
'''
return meta_tags
def build_gradio_interface() -> gr.Blocks:
placeholder_initial_query_params = {}
processed_placeholder_params = _resolve_short_id_to_query_params(placeholder_initial_query_params)
initial_og_tags = get_open_graph_meta_tags(processed_placeholder_params)
gr.set_static_paths(paths=["images/", "models/", "assets/"])
with gr.Blocks(css_paths="style_20250503.css", title="3D viewer", theme='Surn/beeuty',delete_cache=(21600,86400), fill_width=True, head=initial_og_tags) as viewer3d:
gr.Markdown("# 3D Model Viewer")
with gr.Row():
with gr.Column():
model_3d = gr.Model3D(
label="3D Model",
value=None,
elem_id="model_3d", key="model_3d", clear_color=[1.0, 1.0, 1.0, 0.1],
elem_classes="centered solid imgcontainer", interactive=True
)
image_slider = gr.ImageSlider(
label="2D Images",
value=None,
height="100%",
elem_id="image_slider", key="image_slider",
type="filepath"
)
with gr.Row():
gr.Markdown("## Upload your own files")
gr.Markdown("### Supported formats: " + ", ".join([f"`{ext}`" for ext in constants.upload_file_types]))
with gr.Row():
upload_btn = gr.UploadButton(
"Upload 3D Files", elem_id="upload_btn", key="upload_btn",
file_count="multiple",
file_types=constants.upload_file_types
)
with gr.Row():
folder_name_box = gr.Textbox(
label="Upload Folder Name",
value=default_folder,
elem_id="folder_name",
key="folder_name",
placeholder="Enter folder name...",
elem_classes="solid centered"
)
permalink_button = gr.Button("Generate Permalink", elem_id="permalink_button", key="permalink_button", elem_classes="solid small centered")
with gr.Row(visible=False, elem_id="permalink_row") as permalink_row:
permalink = gr.Textbox(
show_copy_button=True,
label="Permalink",
elem_id="permalink",
key="permalink",
elem_classes="solid centered",
max_lines=5,
lines=4
)
gr.Markdown("### Copy the permalink to share your model and images.", elem_classes="solid centered",)
permalink_short = gr.Textbox(
show_copy_button=True,
label="Shortened Permalink",
elem_id="short_permalink",
key="permalink",
elem_classes="solid centered",
max_lines=5,
lines=3
)
with gr.Row():
gr.HTML(value=getVersions(), visible=True, elem_id="versions")
viewer3d.load(
load_data,
inputs=[model_3d, image_slider],
outputs=[model_3d, image_slider, permalink, permalink_short],
scroll_to_output=True
).then(
lambda link: (gr.update(visible=True), gr.update(interactive=False))
if link and len(link) > 0
else (gr.update(visible=False), gr.update(interactive=True)),
inputs=[permalink],
outputs=[permalink_row, permalink_button]
)
upload_btn.upload(
process_upload,
inputs=[upload_btn, model_3d, image_slider],
outputs=[model_3d, image_slider],
scroll_to_output=True,
api_name="process_upload",
show_progress=True
).then(
lambda m, i: gr.update(interactive=True),
inputs=[model_3d, image_slider],
outputs=[permalink_button]
)
permalink_button.click(
lambda model, images, folder: (
lambda res: (res.get("permalink", ""), res.get("short_permalink", ""))
)(storage.upload_files_to_repo(
files=[model] + list(images if images else []),
repo_id=constants.HF_REPO_ID,
folder_name=folder,
create_permalink=True,
repo_type="dataset"
)),
inputs=[model_3d, image_slider, folder_name_box],
outputs=[permalink, permalink_short],
scroll_to_output=True
).then(
lambda link: gr.update(visible=True) if link and len(link) > 0 else gr.update(visible=False),
inputs=[permalink],
outputs=[permalink_row]
)
return viewer3d
if __name__ == "__main__":
v3d = build_gradio_interface()
v3d.launch(
allowed_paths=["assets", "assets/", "./assets", "images/", "./images", 'e:/TMP', 'models/', '3d_model_viewer/'],
favicon_path="./assets/favicon.ico", show_api=True, strict_cors=False
) |