File size: 10,960 Bytes
650c805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# utils/ai_generator_diffusers_flux.py
import os
import torch
import accelerate 
import transformers
import safetensors
import xformers
from diffusers import FluxPipeline
from diffusers.utils import load_image
# from huggingface_hub import hf_hub_download
from PIL import Image
from tempfile import NamedTemporaryFile
from src.condition import Condition
import utils.constants as constants
from utils.image_utils import (
     crop_and_resize_image,
)
from utils.version_info import (
    versions_html,
    get_torch_info,
    get_diffusers_version,
    get_transformers_version,
    get_xformers_version
)
from utils.lora_details import get_trigger_words
from utils.color_utils import detect_color_format
# import utils.misc as misc
from pathlib import Path
import warnings
warnings.filterwarnings("ignore", message=".*Torch was not compiled with flash attention.*")
#print(torch.__version__)  # Ensure it's 2.0 or newer
#print(torch.cuda.is_available())  # Ensure CUDA is available

def generate_image_from_text(
    text,
    model_name="black-forest-labs/FLUX.1-dev",
    lora_weights=None,
    conditioned_image=None,
    image_width=1344,
    image_height=848,
    guidance_scale=3.5,
    num_inference_steps=50,
    seed=0,
    additional_parameters=None
):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    print(f"device:{device}\nmodel_name:{model_name}\n")
    pipe = FluxPipeline.from_pretrained(
        model_name,
        torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
    ).to(device)
    pipe = pipe.to(device)
    pipe.enable_model_cpu_offload()
    # Load and apply LoRA weights
    if lora_weights:
        for lora_weight in lora_weights:
            lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
            if lora_configs:
                for config in lora_configs:
                    weight_name = config.get("weight_name")
                    adapter_name = config.get("adapter_name")
                    pipe.load_lora_weights(
                        lora_weight,
                        weight_name=weight_name,
                        adapter_name=adapter_name,
                        use_auth_token=constants.HF_API_TOKEN
                    )
            else:
                pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
    generator = torch.Generator(device=device).manual_seed(seed)
    conditions = []
    if conditioned_image is not None:
        conditioned_image = crop_and_resize_image(conditioned_image, 1024, 1024)
        condition = Condition("subject", conditioned_image)
        conditions.append(condition)
    generate_params = {
        "prompt": text,
        "height": image_height,
        "width": image_width,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "conditions": conditions if conditions else None
    }
    if additional_parameters:
        generate_params.update(additional_parameters)
    generate_params = {k: v for k, v in generate_params.items() if v is not None}
    result = pipe(**generate_params)
    image = result.images[0]
    return image

def generate_image_lowmem(
    text,
    neg_prompt=None,
    model_name="black-forest-labs/FLUX.1-dev",
    lora_weights=None,
    conditioned_image=None,
    image_width=1344,
    image_height=848,
    guidance_scale=3.5,
    num_inference_steps=50,
    seed=0,
    true_cfg_scale=1.0,
    additional_parameters=None
):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    print(f"device:{device}\nmodel_name:{model_name}\n")
    print(f"\n {get_torch_info()}\n")
    # Disable gradient calculations
    with torch.no_grad():
        # Initialize the pipeline inside the context manager
        pipe = FluxPipeline.from_pretrained(
            model_name,
            torch_dtype=torch.bfloat16 if device == "cuda" else torch.bfloat32            
        ).to(device)
        # Optionally, don't use CPU offload if not necessary
        pipe.enable_model_cpu_offload()
        # alternative version that may be more efficient
        # pipe.enable_sequential_cpu_offload()
        flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
        if flash_attention_enabled == False:
            #Enable xFormers memory-efficient attention (optional)
            pipe.enable_xformers_memory_efficient_attention()
            print("\nEnabled xFormers memory-efficient attention.\n")
        else:            
            pipe.attn_implementation="flash_attention_2"
            print("\nEnabled flash_attention_2.\n")
        pipe.enable_vae_tiling()
        # Load LoRA weights
        if lora_weights:
            for lora_weight in lora_weights:
                lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
                if lora_configs:
                    for config in lora_configs:
                        # Load LoRA weights with optional weight_name and adapter_name
                        weight_name = config.get("weight_name")
                        adapter_name = config.get("adapter_name")
                        if weight_name and adapter_name:
                            pipe.load_lora_weights(
                                lora_weight,
                                weight_name=weight_name,
                                adapter_name=adapter_name,
                                use_auth_token=constants.HF_API_TOKEN
                            )
                        else:
                            pipe.load_lora_weights(
                                lora_weight,
                                use_auth_token=constants.HF_API_TOKEN
                            )
                        
                        # Apply 'pipe' configurations if present
                        if 'pipe' in config:
                            pipe_config = config['pipe']
                            for method_name, params in pipe_config.items():
                                method = getattr(pipe, method_name, None)
                                if method:
                                    print(f"Applying pipe method: {method_name} with params: {params}")
                                    method(**params)
                                else:
                                    print(f"Method {method_name} not found in pipe.")
                else:
                    pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
        generator = torch.Generator(device=device).manual_seed(seed)
        conditions = []
        if conditioned_image is not None:
            conditioned_image = crop_and_resize_image(conditioned_image, 1024, 1024)
            condition = Condition("subject", conditioned_image)
            conditions.append(condition)
        if neg_prompt!=None:
            true_cfg_scale=1.1
        generate_params = {
            "prompt": text,
            "negative_prompt": neg_prompt,
            "true_cfg_scale": true_cfg_scale,
            "height": image_height,
            "width": image_width,
            "guidance_scale": guidance_scale,
            "num_inference_steps": num_inference_steps,
            "generator": generator,
            "conditions": conditions if conditions else None
        }
        if additional_parameters:
            generate_params.update(additional_parameters)
        generate_params = {k: v for k, v in generate_params.items() if v is not None}
        # Generate the image
        result = pipe(**generate_params)
        image = result.images[0]
        # Clean up
        del result
        del conditions
        del generator
    # Delete the pipeline and clear cache
    del pipe
    torch.cuda.empty_cache()
    print(torch.cuda.memory_summary(device=None, abbreviated=False))
    return image

def generate_ai_image_local (
    map_option,
    prompt_textbox_value,
    neg_prompt_textbox_value,
    model="black-forest-labs/FLUX.1-dev",
    lora_weights=None,
    conditioned_image=None,
    height=512,
    width=896,
    num_inference_steps=50,
    guidance_scale=3.5,
    seed=777
):
    try:
        if map_option != "Prompt":
            prompt = constants.PROMPTS[map_option]
            negative_prompt = constants.NEGATIVE_PROMPTS.get(map_option, "")
        else:
            prompt = prompt_textbox_value
            negative_prompt = neg_prompt_textbox_value or ""
        #full_prompt = f"{prompt} {negative_prompt}"
        additional_parameters = {}
        if lora_weights:
            for lora_weight in lora_weights:
                lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
                for config in lora_configs:
                    if 'parameters' in config:
                        additional_parameters.update(config['parameters'])
                    elif 'trigger_words' in config:
                        trigger_words = get_trigger_words(lora_weight)
                        prompt = f"{trigger_words} {prompt}"
        for key, value in additional_parameters.items():
            if key in ['height', 'width', 'num_inference_steps', 'max_sequence_length']:
                additional_parameters[key] = int(value)
            elif key in ['guidance_scale','true_cfg_scale']:
                additional_parameters[key] = float(value)
        height = additional_parameters.get('height', height)
        width = additional_parameters.get('width', width)
        num_inference_steps = additional_parameters.get('num_inference_steps', num_inference_steps)
        guidance_scale = additional_parameters.get('guidance_scale', guidance_scale)
        print("Generating image with the following parameters:")
        print(f"Model: {model}")
        print(f"LoRA Weights: {lora_weights}")
        print(f"Prompt: {prompt}")
        print(f"Neg Prompt: {negative_prompt}")
        print(f"Height: {height}")
        print(f"Width: {width}")
        print(f"Number of Inference Steps: {num_inference_steps}")
        print(f"Guidance Scale: {guidance_scale}")
        print(f"Seed: {seed}")
        print(f"Additional Parameters: {additional_parameters}")
        image = generate_image_lowmem(
            text=prompt,
            model_name=model,
            neg_prompt=negative_prompt,
            lora_weights=lora_weights,
            conditioned_image=conditioned_image,
            image_width=width,
            image_height=height,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            seed=seed,
            additional_parameters=additional_parameters
        )
        with NamedTemporaryFile(delete=False, suffix=".png") as tmp:
            image.save(tmp.name, format="PNG")
            constants.temp_files.append(tmp.name)
            print(f"Image saved to {tmp.name}")
            return tmp.name
    except Exception as e:
        print(f"Error generating AI image: {e}")
        return None