|
import gradio as gr |
|
import os |
|
|
|
|
|
import numpy as np |
|
import torch |
|
from typing import Optional, Union, List, Tuple |
|
|
|
from PIL import Image, ImageFilter |
|
import cv2 |
|
import utils.constants as constants |
|
|
|
from haishoku.haishoku import Haishoku |
|
|
|
from tempfile import NamedTemporaryFile |
|
import atexit |
|
import random |
|
|
|
from transformers import AutoTokenizer , DPTImageProcessor, DPTForDepthEstimation |
|
from pathlib import Path |
|
|
|
import logging |
|
|
|
import gc |
|
|
|
IS_SHARED_SPACE = constants.IS_SHARED_SPACE |
|
|
|
|
|
from utils.file_utils import cleanup_temp_files |
|
|
|
from utils.color_utils import ( |
|
hex_to_rgb, |
|
detect_color_format, |
|
update_color_opacity, |
|
) |
|
from utils.misc import (get_filename, pause, convert_ratio_to_dimensions) |
|
|
|
from utils.image_utils import ( |
|
change_color, |
|
open_image, |
|
build_prerendered_images_by_quality, |
|
upscale_image, |
|
lerp_imagemath, |
|
shrink_and_paste_on_blank, |
|
show_lut, |
|
apply_lut_to_image_path, |
|
multiply_and_blend_images, |
|
alpha_composite_with_control, |
|
crop_and_resize_image, |
|
convert_to_rgba_png, |
|
resize_image_with_aspect_ratio, |
|
build_prerendered_images_by_quality, |
|
get_image_from_dict |
|
) |
|
|
|
from utils.hex_grid import ( |
|
generate_hexagon_grid, |
|
generate_hexagon_grid_interface, |
|
) |
|
|
|
from utils.excluded_colors import ( |
|
add_color, |
|
delete_color, |
|
build_dataframe, |
|
on_input, |
|
excluded_color_list, |
|
on_color_display_select |
|
) |
|
|
|
|
|
|
|
|
|
|
|
from utils.lora_details import ( |
|
upd_prompt_notes, |
|
split_prompt_precisely, |
|
approximate_token_count, |
|
get_trigger_words |
|
) |
|
from diffusers import FluxPipeline,FluxImg2ImgPipeline,FluxControlPipeline |
|
|
|
PIPELINE_CLASSES = { |
|
"FluxPipeline": FluxPipeline, |
|
"FluxImg2ImgPipeline": FluxImg2ImgPipeline, |
|
"FluxControlPipeline": FluxControlPipeline |
|
} |
|
|
|
from utils.version_info import ( |
|
versions_html, |
|
|
|
|
|
|
|
) |
|
import spaces |
|
|
|
input_image_palette = [] |
|
current_prerendered_image = gr.State("./images/images/Beeuty-1.png") |
|
|
|
|
|
atexit.register(cleanup_temp_files) |
|
|
|
def hex_create(hex_size, border_size, input_image_path, start_x, start_y, end_x, end_y, rotation, background_color_hex, background_opacity, border_color_hex, border_opacity, fill_hex, excluded_colors_var, filter_color, x_spacing, y_spacing, add_hex_text_option=None, custom_text_list=None, custom_text_color_list=None): |
|
global input_image_palette |
|
|
|
try: |
|
|
|
input_image = Image.open(input_image_path).convert("RGBA") |
|
except Exception as e: |
|
print(f"Failed to convert image to RGBA: {e}") |
|
|
|
input_image = Image.open(input_image_path) |
|
|
|
min_width, min_height = 1344, 768 |
|
canvas_width = max(min_width, input_image.width) |
|
canvas_height = max(min_height, input_image.height) |
|
|
|
|
|
new_canvas = Image.new("RGBA", (canvas_width, canvas_height), (0, 0, 0, 0)) |
|
|
|
|
|
paste_x = (canvas_width - input_image.width) // 2 |
|
paste_y = (canvas_height - input_image.height) // 2 |
|
|
|
|
|
new_canvas.paste(input_image, (paste_x, paste_y)) |
|
|
|
|
|
with NamedTemporaryFile(delete=False, suffix=".png") as tmp_file: |
|
new_canvas.save(tmp_file.name, format="PNG") |
|
input_image_path = tmp_file.name |
|
constants.temp_files.append(tmp_file.name) |
|
|
|
|
|
input_image = Image.open(input_image_path) |
|
|
|
|
|
input_palette = Haishoku.loadHaishoku(input_image_path) |
|
input_image_palette = input_palette.palette |
|
|
|
|
|
background_color = update_color_opacity( |
|
hex_to_rgb(background_color_hex), |
|
int(background_opacity * (255 / 100)) |
|
) |
|
border_color = update_color_opacity( |
|
hex_to_rgb(border_color_hex), |
|
int(border_opacity * (255 / 100)) |
|
) |
|
|
|
|
|
excluded_color_list = [tuple(lst) for lst in excluded_colors_var] |
|
|
|
|
|
grid_image = generate_hexagon_grid_interface( |
|
hex_size, |
|
border_size, |
|
input_image, |
|
start_x, |
|
start_y, |
|
end_x, |
|
end_y, |
|
rotation, |
|
background_color, |
|
border_color, |
|
fill_hex, |
|
excluded_color_list, |
|
filter_color, |
|
x_spacing, |
|
y_spacing, |
|
add_hex_text_option, |
|
custom_text_list, |
|
custom_text_color_list |
|
) |
|
return grid_image |
|
|
|
def get_model_and_lora(model_textbox): |
|
""" |
|
Determines the model and LoRA weights based on the model_textbox input. |
|
wieghts must be in an array ["Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1"] |
|
""" |
|
|
|
if model_textbox in constants.MODELS: |
|
return model_textbox, [] |
|
|
|
elif model_textbox in constants.LORA_WEIGHTS: |
|
model = constants.LORA_TO_MODEL.get(model_textbox) |
|
return model, model_textbox.split() |
|
else: |
|
|
|
default_model = model_textbox |
|
return default_model, [] |
|
|
|
condition_dict = { |
|
"depth": 0, |
|
"canny": 1, |
|
"subject": 4, |
|
"coloring": 6, |
|
"deblurring": 7, |
|
"fill": 9, |
|
} |
|
|
|
|
|
|
|
|
|
|
|
@spaces.GPU(duration=200, progress=gr.Progress(track_tqdm=True)) |
|
def generate_image_lowmem( |
|
text, |
|
neg_prompt=None, |
|
model_name="black-forest-labs/FLUX.1-dev", |
|
lora_weights=None, |
|
conditioned_image=None, |
|
image_width=1368, |
|
image_height=848, |
|
guidance_scale=3.5, |
|
num_inference_steps=30, |
|
seed=0, |
|
true_cfg_scale=1.0, |
|
pipeline_name="FluxPipeline", |
|
strength=0.75, |
|
additional_parameters=None, |
|
progress=gr.Progress(track_tqdm=True) |
|
): |
|
|
|
|
|
pipeline_class = PIPELINE_CLASSES.get(pipeline_name) |
|
if not pipeline_class: |
|
raise ValueError(f"Unsupported pipeline type '{pipeline_name}'. " |
|
f"Available options: {list(PIPELINE_CLASSES.keys())}") |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
from src.condition import Condition |
|
|
|
print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n") |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
pipe = pipeline_class.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32 |
|
).to(device) |
|
|
|
|
|
|
|
|
|
if pipeline_name == "FluxPipeline": |
|
pipe.enable_model_cpu_offload() |
|
pipe.vae.enable_slicing() |
|
|
|
else: |
|
pipe.enable_model_cpu_offload() |
|
|
|
|
|
tokenizer = pipe.tokenizer |
|
|
|
|
|
if getattr(tokenizer, 'add_prefix_space', False): |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, device_map = 'cpu') |
|
|
|
pipe.tokenizer = tokenizer |
|
pipe.to(device) |
|
|
|
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled() |
|
if flash_attention_enabled == False: |
|
|
|
|
|
print("\nEnabled xFormers memory-efficient attention.\n") |
|
else: |
|
pipe.attn_implementation="flash_attention_2" |
|
print("\nEnabled flash_attention_2.\n") |
|
|
|
condition_type = "subject" |
|
|
|
|
|
if lora_weights: |
|
for lora_weight in lora_weights: |
|
lora_configs = constants.LORA_DETAILS.get(lora_weight, []) |
|
lora_weight_set = False |
|
if lora_configs: |
|
for config in lora_configs: |
|
|
|
if 'weight_name' in config: |
|
weight_name = config.get("weight_name") |
|
adapter_name = config.get("adapter_name") |
|
lora_collection = config.get("lora_collection") |
|
if weight_name and adapter_name and lora_collection and lora_weight_set == False: |
|
pipe.load_lora_weights( |
|
lora_collection, |
|
weight_name=weight_name, |
|
adapter_name=adapter_name, |
|
token=constants.HF_API_TOKEN |
|
) |
|
lora_weight_set = True |
|
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n") |
|
elif weight_name and adapter_name==None and lora_collection and lora_weight_set == False: |
|
pipe.load_lora_weights( |
|
lora_collection, |
|
weight_name=weight_name, |
|
token=constants.HF_API_TOKEN |
|
) |
|
lora_weight_set = True |
|
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n") |
|
elif weight_name and adapter_name and lora_weight_set == False: |
|
pipe.load_lora_weights( |
|
lora_weight, |
|
weight_name=weight_name, |
|
adapter_name=adapter_name, |
|
token=constants.HF_API_TOKEN |
|
) |
|
lora_weight_set = True |
|
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n") |
|
elif weight_name and adapter_name==None and lora_weight_set == False: |
|
pipe.load_lora_weights( |
|
lora_weight, |
|
weight_name=weight_name, |
|
token=constants.HF_API_TOKEN |
|
) |
|
lora_weight_set = True |
|
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n") |
|
elif lora_weight_set == False: |
|
pipe.load_lora_weights( |
|
lora_weight, |
|
token=constants.HF_API_TOKEN |
|
) |
|
lora_weight_set = True |
|
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n") |
|
|
|
if 'pipe' in config: |
|
pipe_config = config['pipe'] |
|
for method_name, params in pipe_config.items(): |
|
method = getattr(pipe, method_name, None) |
|
if method: |
|
print(f"Applying pipe method: {method_name} with params: {params}") |
|
method(**params) |
|
else: |
|
print(f"Method {method_name} not found in pipe.") |
|
if 'condition_type' in config: |
|
condition_type = config['condition_type'] |
|
if condition_type == "coloring": |
|
|
|
print("\nEnabled coloring.\n") |
|
elif condition_type == "deblurring": |
|
|
|
print("\nEnabled deblurring.\n") |
|
elif condition_type == "fill": |
|
|
|
print("\nEnabled fill.\n") |
|
elif condition_type == "depth": |
|
|
|
print("\nEnabled depth.\n") |
|
elif condition_type == "canny": |
|
|
|
print("\nEnabled canny.\n") |
|
elif condition_type == "subject": |
|
|
|
print("\nEnabled subject.\n") |
|
else: |
|
print(f"Condition type {condition_type} not implemented.") |
|
else: |
|
pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN) |
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
conditions = [] |
|
if conditioned_image is not None: |
|
conditioned_image = crop_and_resize_image(conditioned_image, image_width, image_height) |
|
condition = Condition(condition_type, conditioned_image) |
|
conditions.append(condition) |
|
print(f"\nAdded conditioned image.\n {conditioned_image.size}") |
|
|
|
additional_parameters ={ |
|
"strength": strength, |
|
"image": conditioned_image, |
|
} |
|
else: |
|
print("\nNo conditioned image provided.") |
|
if neg_prompt!=None: |
|
true_cfg_scale=1.1 |
|
additional_parameters ={ |
|
"negative_prompt": neg_prompt, |
|
"true_cfg_scale": true_cfg_scale, |
|
} |
|
|
|
if approximate_token_count(text) > 76: |
|
prompt, prompt2 = split_prompt_precisely(text) |
|
prompt_parameters = { |
|
"prompt" : prompt, |
|
"prompt_2": prompt2 |
|
} |
|
else: |
|
prompt_parameters = { |
|
"prompt" :text |
|
} |
|
additional_parameters.update(prompt_parameters) |
|
|
|
generate_params = { |
|
"height": image_height, |
|
"width": image_width, |
|
"guidance_scale": guidance_scale, |
|
"num_inference_steps": num_inference_steps, |
|
"generator": generator, } |
|
if additional_parameters: |
|
generate_params.update(additional_parameters) |
|
generate_params = {k: v for k, v in generate_params.items() if v is not None} |
|
print(f"generate_params: {generate_params}") |
|
|
|
result = pipe(**generate_params) |
|
image = result.images[0] |
|
|
|
del result |
|
del conditions |
|
del generator |
|
|
|
del pipe |
|
torch.cuda.empty_cache() |
|
torch.cuda.ipc_collect() |
|
print(torch.cuda.memory_summary(device=None, abbreviated=False)) |
|
|
|
return image |
|
|
|
def generate_ai_image_local ( |
|
map_option, |
|
prompt_textbox_value, |
|
neg_prompt_textbox_value, |
|
model="black-forest-labs/FLUX.1-dev", |
|
lora_weights=None, |
|
conditioned_image=None, |
|
height=512, |
|
width=912, |
|
num_inference_steps=30, |
|
guidance_scale=3.5, |
|
seed=777, |
|
pipeline_name="FluxPipeline", |
|
strength=0.75, |
|
progress=gr.Progress(track_tqdm=True) |
|
): |
|
print(f"Generating image with lowmem") |
|
try: |
|
if map_option != "Prompt": |
|
prompt = constants.PROMPTS[map_option] |
|
negative_prompt = constants.NEGATIVE_PROMPTS.get(map_option, "") |
|
else: |
|
prompt = prompt_textbox_value |
|
negative_prompt = neg_prompt_textbox_value or "" |
|
|
|
additional_parameters = {} |
|
if lora_weights: |
|
for lora_weight in lora_weights: |
|
lora_configs = constants.LORA_DETAILS.get(lora_weight, []) |
|
for config in lora_configs: |
|
if 'parameters' in config: |
|
additional_parameters.update(config['parameters']) |
|
elif 'trigger_words' in config: |
|
trigger_words = get_trigger_words(lora_weight) |
|
prompt = f"{trigger_words} {prompt}" |
|
for key, value in additional_parameters.items(): |
|
if key in ['height', 'width', 'num_inference_steps', 'max_sequence_length']: |
|
additional_parameters[key] = int(value) |
|
elif key in ['guidance_scale','true_cfg_scale']: |
|
additional_parameters[key] = float(value) |
|
height = additional_parameters.pop('height', height) |
|
width = additional_parameters.pop('width', width) |
|
num_inference_steps = additional_parameters.pop('num_inference_steps', num_inference_steps) |
|
guidance_scale = additional_parameters.pop('guidance_scale', guidance_scale) |
|
print("Generating image with the following parameters:\n") |
|
print(f"Model: {model}") |
|
print(f"LoRA Weights: {lora_weights}") |
|
print(f"Prompt: {prompt}") |
|
print(f"Neg Prompt: {negative_prompt}") |
|
print(f"Height: {height}") |
|
print(f"Width: {width}") |
|
print(f"Number of Inference Steps: {num_inference_steps}") |
|
print(f"Guidance Scale: {guidance_scale}") |
|
print(f"Seed: {seed}") |
|
print(f"Additional Parameters: {additional_parameters}") |
|
print(f"Conditioned Image: {conditioned_image}") |
|
print(f"Conditioned Image Strength: {strength}") |
|
print(f"pipeline: {pipeline_name}") |
|
image = generate_image_lowmem( |
|
text=prompt, |
|
model_name=model, |
|
neg_prompt=negative_prompt, |
|
lora_weights=lora_weights, |
|
conditioned_image=conditioned_image, |
|
image_width=width, |
|
image_height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
seed=seed, |
|
pipeline_name=pipeline_name, |
|
strength=strength, |
|
additional_parameters=additional_parameters |
|
) |
|
with NamedTemporaryFile(delete=False, suffix=".png") as tmp: |
|
image.save(tmp.name, format="PNG") |
|
constants.temp_files.append(tmp.name) |
|
print(f"Image saved to {tmp.name}") |
|
return tmp.name |
|
except Exception as e: |
|
print(f"Error generating AI image: {e}") |
|
|
|
return None |
|
|
|
|
|
def generate_input_image_click(image_input, map_option, prompt_textbox_value, negative_prompt_textbox_value, model_textbox_value, randomize_seed=True, seed=None, use_conditioned_image=False, strength=0.5, image_format="16:9", scale_factor=(8/3), progress=gr.Progress(track_tqdm=True)): |
|
if randomize_seed: |
|
seed = random.randint(0, constants.MAX_SEED) |
|
|
|
|
|
model, lora_weights = get_model_and_lora(model_textbox_value) |
|
global current_prerendered_image |
|
conditioned_image=None |
|
formatted_map_option = map_option.lower().replace(' ', '_') |
|
|
|
if use_conditioned_image: |
|
print(f"Conditioned path: {current_prerendered_image.value}.. converting to RGB\n") |
|
|
|
if isinstance(current_prerendered_image.value, str): |
|
conditioned_image = open_image(current_prerendered_image.value).convert("RGB") |
|
print(f"Conditioned Image: {conditioned_image.size}.. converted to RGB\n") |
|
|
|
elif image_input is not None: |
|
conditioned_image = open_image(image_input).convert("RGB") |
|
print(f"Conditioned Image set to modify Input Image!\nClear to generate new image.") |
|
gr.Info("Conditioned Image set to modify Input Image! Clear to generate new image",duration=5) |
|
|
|
|
|
width_ratio, height_ratio = map(int, image_format.split(":")) |
|
aspect_ratio = width_ratio / height_ratio |
|
|
|
width, height = convert_ratio_to_dimensions(aspect_ratio, 576) |
|
pipeline = "FluxPipeline" |
|
if conditioned_image is not None: |
|
pipeline = "FluxImg2ImgPipeline" |
|
|
|
image_path = generate_ai_image_local( |
|
map_option, |
|
prompt_textbox_value, |
|
negative_prompt_textbox_value, |
|
model, |
|
lora_weights, |
|
conditioned_image, |
|
strength=strength, |
|
height=height, |
|
width=width, |
|
seed=seed, |
|
pipeline_name=pipeline, |
|
) |
|
|
|
|
|
try: |
|
image = Image.open(image_path).convert("RGBA") |
|
except Exception as e: |
|
print(f"Failed to open generated image: {e}") |
|
return image_path, seed |
|
|
|
|
|
upscaled_image = upscale_image(image, scale_factor) |
|
|
|
|
|
with NamedTemporaryFile(delete=False, suffix=".png", prefix=f"{formatted_map_option}_") as tmp_upscaled: |
|
upscaled_image.save(tmp_upscaled.name, format="PNG") |
|
constants.temp_files.append(tmp_upscaled.name) |
|
print(f"Upscaled image saved to {tmp_upscaled.name}") |
|
gc.collect() |
|
|
|
return tmp_upscaled.name, seed |
|
|
|
def update_prompt_visibility(map_option): |
|
is_visible = (map_option == "Prompt") |
|
return ( |
|
gr.update(visible=is_visible), |
|
gr.update(visible=is_visible), |
|
gr.update(visible=is_visible) |
|
) |
|
|
|
def update_prompt_notes(model_textbox_value): |
|
return upd_prompt_notes(model_textbox_value) |
|
|
|
def on_prerendered_gallery_selection(event_data: gr.SelectData): |
|
global current_prerendered_image |
|
selected_index = event_data.index |
|
selected_image = constants.pre_rendered_maps_paths[selected_index] |
|
print(f"Template Image Selected: {selected_image} ({event_data.index})\n") |
|
gr.Info(f"Template Image Selected: {selected_image} ({event_data.index})",duration=5) |
|
current_prerendered_image.value = selected_image |
|
return current_prerendered_image |
|
|
|
def combine_images_with_lerp(input_image, output_image, alpha): |
|
in_image = open_image(input_image) |
|
out_image = open_image(output_image) |
|
print(f"Combining images with alpha: {alpha}") |
|
return lerp_imagemath(in_image, out_image, alpha) |
|
|
|
def add_border(image, mask_width, mask_height, blank_color): |
|
bordered_image_output = Image.open(image).convert("RGBA") |
|
margin_color = detect_color_format(blank_color) |
|
print(f"Adding border to image with width: {mask_width}, height: {mask_height}, color: {margin_color}") |
|
return shrink_and_paste_on_blank(bordered_image_output, mask_width, mask_height, margin_color) |
|
|
|
|
|
|
|
|
|
|
|
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large",) |
|
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large", ignore_mismatched_sizes=True) |
|
|
|
def create_3d_obj(rgb_image, raw_depth, image_path, depth=10, z_scale=200): |
|
""" |
|
Creates a 3D object from RGB and depth images. |
|
|
|
Args: |
|
rgb_image (np.ndarray): The RGB image as a NumPy array. |
|
raw_depth (np.ndarray): The raw depth data. |
|
image_path (Path): The path to the original image. |
|
depth (int, optional): Depth parameter for Poisson reconstruction. Defaults to 10. |
|
z_scale (float, optional): Scaling factor for the Z-axis. Defaults to 200. |
|
|
|
Returns: |
|
str: The file path to the saved GLTF model. |
|
""" |
|
import open3d as o3d |
|
|
|
depth_image = ((raw_depth - raw_depth.min()) / (raw_depth.max() - raw_depth.min()) * 255).astype("uint8") |
|
depth_o3d = o3d.geometry.Image(depth_image) |
|
image_o3d = o3d.geometry.Image(rgb_image) |
|
|
|
|
|
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( |
|
image_o3d, depth_o3d, convert_rgb_to_intensity=False |
|
) |
|
|
|
height, width = depth_image.shape |
|
|
|
|
|
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic( |
|
width, |
|
height, |
|
fx=z_scale, |
|
fy=z_scale, |
|
cx=width / 2.0, |
|
cy=height / 2.0, |
|
) |
|
|
|
|
|
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic) |
|
|
|
|
|
points = np.asarray(pcd.points) |
|
depth_scaled = ((raw_depth - raw_depth.min()) / (raw_depth.max() - raw_depth.min())) * (z_scale*100) |
|
z_values = depth_scaled.flatten()[:len(points)] |
|
points[:, 2] *= z_values |
|
pcd.points = o3d.utility.Vector3dVector(points) |
|
|
|
|
|
pcd.estimate_normals( |
|
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=60) |
|
) |
|
pcd.orient_normals_towards_camera_location(camera_location=np.array([0.0, 0.0, 1.5 ])) |
|
|
|
|
|
pcd.transform([[1, 0, 0, 0], |
|
[0, -1, 0, 0], |
|
[0, 0, -1, 0], |
|
[0, 0, 0, 1]]) |
|
pcd.transform([[-1, 0, 0, 0], |
|
[0, 1, 0, 0], |
|
[0, 0, 1, 0], |
|
[0, 0, 0, 1]]) |
|
|
|
|
|
print(f"Running Poisson surface reconstruction with depth {depth}") |
|
mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson( |
|
pcd, depth=depth, width=0, scale=1.1, linear_fit=True |
|
) |
|
print(f"Raw mesh vertices: {len(mesh_raw.vertices)}, triangles: {len(mesh_raw.triangles)}") |
|
|
|
|
|
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / (max(width, height) * 0.8) |
|
mesh = mesh_raw.simplify_vertex_clustering( |
|
voxel_size=voxel_size, |
|
contraction=o3d.geometry.SimplificationContraction.Average, |
|
) |
|
print(f"Simplified mesh vertices: {len(mesh.vertices)}, triangles: {len(mesh.triangles)}") |
|
|
|
|
|
bbox = pcd.get_axis_aligned_bounding_box() |
|
mesh_crop = mesh.crop(bbox) |
|
|
|
|
|
temp_dir = Path.cwd() / "models" |
|
temp_dir.mkdir(exist_ok=True) |
|
gltf_path = str(temp_dir / f"{image_path.stem}.gltf") |
|
o3d.io.write_triangle_mesh(gltf_path, mesh_crop, write_triangle_uvs=True) |
|
return gltf_path |
|
|
|
@spaces.GPU() |
|
def depth_process_image(image_path, resized_width=800, z_scale=208): |
|
""" |
|
Processes the input image to generate a depth map and a 3D mesh reconstruction. |
|
|
|
Args: |
|
image_path (str): The file path to the input image. |
|
|
|
Returns: |
|
list: A list containing the depth image, 3D mesh reconstruction, and GLTF file path. |
|
""" |
|
|
|
image_path = Path(image_path) |
|
if not image_path.exists(): |
|
raise ValueError("Image file not found") |
|
|
|
|
|
image_raw = Image.open(image_path).convert("RGB") |
|
print(f"Original size: {image_raw.size}") |
|
resized_height = int(resized_width * image_raw.size[1] / image_raw.size[0]) |
|
image = image_raw.resize((resized_width, resized_height), Image.Resampling.LANCZOS) |
|
print(f"Resized size: {image.size}") |
|
|
|
|
|
encoding = image_processor(image, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = depth_model(**encoding) |
|
predicted_depth = outputs.predicted_depth |
|
|
|
|
|
prediction = torch.nn.functional.interpolate( |
|
predicted_depth.unsqueeze(1), |
|
size=(image.height, image.width), |
|
mode="bicubic", |
|
align_corners=False, |
|
).squeeze() |
|
|
|
|
|
if torch.cuda.is_available(): |
|
prediction = prediction.numpy() |
|
else: |
|
prediction = prediction.cpu().numpy() |
|
depth_min, depth_max = prediction.min(), prediction.max() |
|
depth_image = ((prediction - depth_min) / (depth_max - depth_min) * 255).astype("uint8") |
|
|
|
try: |
|
gltf_path = create_3d_obj(np.array(image), prediction, image_path, depth=10, z_scale=z_scale) |
|
except Exception: |
|
gltf_path = create_3d_obj(np.array(image), prediction, image_path, depth=8, z_scale=z_scale) |
|
|
|
img = Image.fromarray(depth_image) |
|
|
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
torch.cuda.ipc_collect() |
|
return [img, gltf_path, gltf_path] |
|
|
|
def generate_depth_and_3d(input_image_path, resize_width=800, z_scale=1.0): |
|
return depth_process_image(input_image_path, resize_width, z_scale) |
|
|
|
|
|
def generate_depth_button_click(depth_image_source, resize_width, z_scale, input_image, output_image, overlay_image, bordered_image_output): |
|
if depth_image_source == "Input Image": |
|
image_path = input_image |
|
elif depth_image_source == "Output Image": |
|
image_path = output_image |
|
elif depth_image_source == "Image with Margins": |
|
image_path = bordered_image_output |
|
else: |
|
image_path = overlay_image |
|
|
|
return generate_depth_and_3d(image_path, resize_width, z_scale) |
|
|
|
@spaces.GPU() |
|
def getVersions(): |
|
return versions_html() |
|
|
|
|
|
|
|
|
|
title = "HexaGrid Creator" |
|
|
|
examples = [["assets//examples//hex_map_p1.png", 32, 1, 0, 0, 0, 0, 0, "#ede9ac44","#12165380", True]] |
|
|
|
gr.set_static_paths(paths=["images/","images/images","images/prerendered","LUT/","fonts/","assets/"]) |
|
|
|
|
|
with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty',delete_cache=(21600,86400)) as hexaGrid: |
|
with gr.Row(): |
|
gr.Markdown(""" |
|
# HexaGrid Creator |
|
## Transform Your Images into Mesmerizing Hexagon Grid Masterpieces! ⬢""", elem_classes="intro") |
|
with gr.Row(): |
|
with gr.Accordion("Welcome to HexaGrid Creator, the ultimate tool for transforming your images into stunning hexagon grid artworks. Whether you're a tabletop game enthusiast, a digital artist, or someone who loves unique patterns, HexaGrid Creator has something for you.", open=False, elem_classes="intro"): |
|
gr.Markdown (""" |
|
|
|
## Drop an image into the Input Image and get started! |
|
|
|
|
|
|
|
## What is HexaGrid Creator? |
|
HexaGrid Creator is a web-based application that allows you to apply a hexagon grid overlay to any image. You can customize the size, color, and opacity of the hexagons, as well as the background and border colors. The result is a visually striking image that looks like it was made from hexagonal tiles! |
|
|
|
### What Can You Do? |
|
- **Generate Hexagon Grids:** Create beautiful hexagon grid overlays on any image with fully customizable parameters. |
|
- **AI-Powered Image Generation:** Use advanced AI models to generate images based on your prompts and apply hexagon grids to them. |
|
- **Color Exclusion:** Select and exclude specific colors from your hexagon grid for a cleaner and more refined look. |
|
- **Interactive Customization:** Adjust hexagon size, border size, rotation, background color, and more in real-time. |
|
- **Depth and 3D Model Generation:** Generate depth maps and 3D models from your images for enhanced visualization. |
|
- **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement. |
|
- **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization. |
|
- **Add Margins:** Add customizable margins around your images for a polished finish. |
|
|
|
### Why You'll Love It |
|
- **Fun and Easy to Use:** With an intuitive interface and real-time previews, creating hexagon grids has never been this fun! |
|
- **Endless Creativity:** Unleash your creativity with endless customization options and see your images transform in unique ways. |
|
- **Hexagon-Inspired Theme:** Enjoy a delightful yellow and purple theme inspired by hexagons! ⬢ |
|
- **Advanced AI Models:** Leverage advanced AI models and LoRA weights for high-quality image generation and customization. |
|
|
|
### Get Started |
|
1. **Upload or Generate an Image:** Start by uploading your own image or generate one using our AI-powered tool. |
|
2. **Customize Your Grid:** Play around with the settings to create the perfect hexagon grid overlay. |
|
3. **Download and Share:** Once you're happy with your creation, download it and share it with the world! |
|
|
|
### Advanced Features |
|
- **Generative AI Integration:** Utilize models like `black-forest-labs/FLUX.1-dev` and various LoRA weights for generating unique images. |
|
- **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization. |
|
- **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement. |
|
- **Depth and 3D Model Generation:** Create depth maps and 3D models from your images for enhanced visualization. |
|
- **Add Margins:** Customize margins around your images for a polished finish. |
|
|
|
Join the hive and start creating with HexaGrid Creator today! |
|
|
|
""", elem_classes="intro") |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
input_image = gr.Image( |
|
label="Input Image", |
|
type="filepath", |
|
interactive=True, |
|
elem_classes="centered solid imgcontainer", |
|
key="imgInput", |
|
image_mode=None, |
|
format="PNG" |
|
) |
|
|
|
|
|
def on_input_image_change(image_path): |
|
if image_path is None: |
|
gr.Warning("Please upload an Input Image to get started.") |
|
return None |
|
img, img_path = convert_to_rgba_png(image_path) |
|
return img_path |
|
|
|
input_image.change( |
|
fn=on_input_image_change, |
|
inputs=[input_image], |
|
outputs=[input_image], scroll_to_output=True, |
|
) |
|
with gr.Column(): |
|
with gr.Accordion("Hex Coloring and Exclusion", open = False): |
|
with gr.Row(): |
|
with gr.Column(): |
|
color_picker = gr.ColorPicker(label="Pick a color to exclude",value="#505050") |
|
with gr.Column(): |
|
filter_color = gr.Checkbox(label="Filter Excluded Colors from Sampling", value=False,) |
|
exclude_color_button = gr.Button("Exclude Color", elem_id="exlude_color_button", elem_classes="solid") |
|
color_display = gr.DataFrame(label="List of Excluded RGBA Colors", headers=["R", "G", "B", "A"], elem_id="excluded_colors", type="array", value=build_dataframe(excluded_color_list), interactive=True, elem_classes="solid centered") |
|
selected_row = gr.Number(0, label="Selected Row", visible=False) |
|
delete_button = gr.Button("Delete Row", elem_id="delete_exclusion_button", elem_classes="solid") |
|
fill_hex = gr.Checkbox(label="Fill Hex with color from Image", value=True) |
|
with gr.Accordion("Image Filters", open = False): |
|
with gr.Row(): |
|
with gr.Column(): |
|
composite_color = gr.ColorPicker(label="Color", value="#ede9ac44") |
|
with gr.Column(): |
|
composite_opacity = gr.Slider(label="Opacity %", minimum=0, maximum=100, value=50, interactive=True) |
|
with gr.Row(): |
|
composite_button = gr.Button("Composite", elem_classes="solid") |
|
with gr.Row(): |
|
with gr.Column(): |
|
lut_filename = gr.Textbox( |
|
value="", |
|
label="Look Up Table (LUT) File Name", |
|
elem_id="lutFileName") |
|
with gr.Column(): |
|
lut_file = gr.File( |
|
value=None, |
|
file_count="single", |
|
file_types=[".cube"], |
|
type="filepath", |
|
label="LUT cube File") |
|
with gr.Row(): |
|
lut_example_image = gr.Image(type="pil", label="Filter (LUT) Example Image", value=constants.default_lut_example_img) |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown(""" |
|
### Included Filters (LUTs) |
|
There are several included Filters: |
|
|
|
Try them on the example image before applying to your Input Image. |
|
""", elem_id="lut_markdown") |
|
with gr.Column(): |
|
gr.Examples(elem_id="lut_examples", |
|
examples=[[f] for f in constants.lut_files], |
|
inputs=[lut_filename], |
|
outputs=[lut_filename], |
|
label="Select a Filter (LUT) file. Populate the LUT File Name field" |
|
) |
|
|
|
with gr.Row(): |
|
apply_lut_button = gr.Button("Apply Filter (LUT)", elem_classes="solid", elem_id="apply_lut_button") |
|
|
|
lut_file.change(get_filename, inputs=[lut_file], outputs=[lut_filename]) |
|
lut_filename.change(show_lut, inputs=[lut_filename, lut_example_image], outputs=[lut_example_image]) |
|
apply_lut_button.click( |
|
lambda lut_filename, input_image: gr.Warning("Please upload an Input Image to get started.") if input_image is None else apply_lut_to_image_path(lut_filename, input_image)[0], |
|
inputs=[lut_filename, input_image], |
|
outputs=[input_image], |
|
scroll_to_output=True |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("Generate AI Image (click here for options)", open = False): |
|
with gr.Row(): |
|
with gr.Column(): |
|
model_options = gr.Dropdown( |
|
label="Choose an AI Model*", |
|
choices=constants.MODELS + constants.LORA_WEIGHTS + ["Manual Entry"], |
|
value="Cossale/Frames2-Flex.1", |
|
elem_classes="solid" |
|
) |
|
model_textbox = gr.Textbox( |
|
label="LORA/Model", |
|
value="Cossale/Frames2-Flex.1", |
|
elem_classes="solid", |
|
elem_id="inference_model", |
|
visible=False |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
map_options = gr.Dropdown( |
|
label="Map Options*", |
|
choices=list(constants.PROMPTS.keys()), |
|
value="Alien Landscape", |
|
elem_classes="solid", |
|
scale=0 |
|
) |
|
|
|
|
|
|
|
image_size_ratio = gr.Dropdown(label="Image Aspect Ratio", choices=["16:9", "16:10", "4:5", "4:3", "2:1","3:2","1:1", "9:16", "10:16", "5:4", "3:4","1:2", "2:3"], value="16:9", elem_classes="solid", type="value", scale=0, interactive=True) |
|
with gr.Column(): |
|
seed_slider = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=constants.MAX_SEED, |
|
step=1, |
|
value=0, |
|
scale=0, randomize=True, elem_id="rnd_seed" |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=False, scale=0, interactive=True) |
|
prompt_textbox = gr.Textbox( |
|
label="Prompt", |
|
visible=False, |
|
elem_classes="solid", |
|
value="top-down, (rectangular tabletop_map) alien planet map, Battletech_boardgame scifi world with forests, lakes, oceans, continents and snow at the top and bottom, (middle is dark, no_reflections, no_shadows), from directly above. From 100,000 feet looking straight down", |
|
lines=4 |
|
) |
|
negative_prompt_textbox = gr.Textbox( |
|
label="Negative Prompt", |
|
visible=False, |
|
elem_classes="solid", |
|
value="Earth, low quality, bad anatomy, blurry, cropped, worst quality, shadows, people, humans, reflections, shadows, realistic map of the Earth, isometric, text" |
|
) |
|
prompt_notes_label = gr.Label( |
|
"You should use FRM$ as trigger words. @1.5 minutes", |
|
elem_classes="solid centered small", |
|
show_label=False, |
|
visible=False |
|
) |
|
|
|
map_options.change( |
|
fn=update_prompt_visibility, |
|
inputs=[map_options], |
|
outputs=[prompt_textbox, negative_prompt_textbox, prompt_notes_label] |
|
) |
|
with gr.Row(): |
|
generate_input_image = gr.Button( |
|
"Generate from Input Image & Options ", |
|
elem_id="generate_input_image", |
|
elem_classes="solid" |
|
) |
|
with gr.Column(scale=2): |
|
with gr.Accordion("Template Images", open = False): |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
|
|
prerendered_image_gallery = gr.Gallery(label="Image Gallery", show_label=True, value=build_prerendered_images_by_quality(3,'thumbnail'), elem_id="gallery", elem_classes="solid", type="filepath", columns=[3], rows=[3], preview=False ,object_fit="contain", height="auto", format="png",allow_preview=False) |
|
with gr.Column(): |
|
image_guidance_stength = gr.Slider(label="Image Guidance Strength (prompt percentage)", minimum=0, maximum=1.0, value=0.85, step=0.01, interactive=True) |
|
replace_input_image_button = gr.Button( |
|
"Replace Input Image", |
|
elem_id="prerendered_replace_input_image_button", |
|
elem_classes="solid" |
|
) |
|
generate_input_image_from_gallery = gr.Button( |
|
"Generate AI Image from Template Image & Options", |
|
elem_id="generate_input_image_from_gallery", |
|
elem_classes="solid" |
|
) |
|
|
|
with gr.Accordion("Advanced Hexagon Settings", open = False): |
|
with gr.Row(): |
|
start_x = gr.Number(label="Start X", value=20, minimum=-512, maximum= 512, precision=0) |
|
start_y = gr.Number(label="Start Y", value=20, minimum=-512, maximum= 512, precision=0) |
|
end_x = gr.Number(label="End X", value=-20, minimum=-512, maximum= 512, precision=0) |
|
end_y = gr.Number(label="End Y", value=-20, minimum=-512, maximum= 512, precision=0) |
|
with gr.Row(): |
|
x_spacing = gr.Number(label="Adjust Horizontal spacing", value=-8, minimum=-200, maximum=200, precision=1) |
|
y_spacing = gr.Number(label="Adjust Vertical spacing", value=3, minimum=-200, maximum=200, precision=1) |
|
with gr.Row(): |
|
rotation = gr.Slider(-90, 180, 0.0, 0.1, label="Hexagon Rotation (degree)") |
|
add_hex_text = gr.Dropdown(label="Add Text to Hexagons", choices=[None, "Row-Column Coordinates", "Sequential Numbers", "Playing Cards Sequential", "Playing Cards Alternate Red and Black", "Custom List"], value=None) |
|
with gr.Row(): |
|
custom_text_list = gr.TextArea(label="Custom Text List", value=constants.cards_alternating, visible=False,) |
|
custom_text_color_list = gr.TextArea(label="Custom Text Color List", value=constants.card_colors_alternating, visible=False) |
|
with gr.Row(): |
|
hex_text_info = gr.Markdown(""" |
|
### Text Color uses the Border Color and Border Opacity, unless you use a custom list. |
|
### The Custom Text List and Custom Text Color List are comma separated lists. |
|
### The custom color list is a comma separated list of hex colors. |
|
#### Example: "A,2,3,4,5,6,7,8,9,10,J,Q,K", "red,#0000FF,#00FF00,red,#FFFF00,#00FFFF,#FF8000,#FF00FF,#FF0080,#FF8000,#FF0080,lightblue" |
|
""", elem_id="hex_text_info", visible=False) |
|
add_hex_text.change( |
|
fn=lambda x: ( |
|
gr.update(visible=(x == "Custom List")), |
|
gr.update(visible=(x == "Custom List")), |
|
gr.update(visible=(x != None)) |
|
), |
|
inputs=add_hex_text, |
|
outputs=[custom_text_list, custom_text_color_list, hex_text_info] |
|
) |
|
with gr.Row(): |
|
hex_size = gr.Number(label="Hexagon Size", value=90, minimum=1, maximum=768) |
|
border_size = gr.Slider(-5,25,value=2,step=1,label="Border Size") |
|
with gr.Row(): |
|
background_color = gr.ColorPicker(label="Background Color", value="#000000", interactive=True) |
|
background_opacity = gr.Slider(0,100,0,1,label="Background Opacity %") |
|
border_color = gr.ColorPicker(label="Border Color", value="#7b7b7b", interactive=True) |
|
border_opacity = gr.Slider(0,100,50,1,label="Border Opacity %") |
|
with gr.Row(): |
|
hex_button = gr.Button("Generate Hex Grid!", elem_classes="solid", elem_id="btn-generate") |
|
with gr.Row(): |
|
output_image = gr.Image(label="Hexagon Grid Image", image_mode = "RGBA", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOutput",interactive=True) |
|
overlay_image = gr.Image(label="Hexagon Overlay Image", image_mode = "RGBA", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOverlay",interactive=True) |
|
with gr.Row(): |
|
output_overlay_composite = gr.Slider(0,100,50,0.5, label="Interpolate Intensity") |
|
output_blend_multiply_composite = gr.Slider(0,100,50,0.5, label="Overlay Intensity") |
|
output_alpha_composite = gr.Slider(0,100,50,0.5, label="Alpha Composite Intensity") |
|
with gr.Accordion("Add Margins (bleed)", open=False): |
|
with gr.Row(): |
|
border_image_source = gr.Radio(label="Add Margins around which Image", choices=["Input Image", "Overlay Image"], value="Overlay Image") |
|
with gr.Row(): |
|
mask_width = gr.Number(label="Margins Width", value=10, minimum=0, maximum=100, precision=0) |
|
mask_height = gr.Number(label="Margins Height", value=10, minimum=0, maximum=100, precision=0) |
|
with gr.Row(): |
|
margin_color = gr.ColorPicker(label="Margin Color", value="#333333FF", interactive=True) |
|
margin_opacity = gr.Slider(0,100,95,0.5,label="Margin Opacity %") |
|
with gr.Row(): |
|
add_border_button = gr.Button("Add Margins", elem_classes="solid", variant="secondary") |
|
with gr.Row(): |
|
bordered_image_output = gr.Image(label="Image with Margins", image_mode="RGBA", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgBordered",interactive=True) |
|
|
|
with gr.Accordion("Height Maps and 3D", open = False): |
|
with gr.Row(): |
|
with gr.Column(): |
|
resized_width_slider = gr.Slider( |
|
minimum=256, |
|
maximum=1760, |
|
step=16, |
|
value=800, |
|
label="Resized Width", |
|
info="Adjust the width to which the input image is resized." |
|
) |
|
z_scale_slider = gr.Slider( |
|
minimum=0.2, |
|
maximum=3.0, |
|
step=0.01, |
|
value=0.5, |
|
label="Z-Scale", |
|
info="Adjust the scaling factor for the Z-axis in the 3D model." |
|
) |
|
with gr.Column(): |
|
depth_image_source = gr.Radio(label="Depth Image Source", choices=["Input Image", "Output Image", "Overlay Image","Image with Margins"], value="Input Image") |
|
with gr.Row(): |
|
generate_depth_button = gr.Button("Generate Depth Map and 3D Model From Selected Image", elem_classes="solid", variant="secondary") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
depth_map_output = gr.Image(label="Depth Map", image_mode="L", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgDepth",interactive=True) |
|
with gr.Column(scale=2): |
|
model_output = gr.Model3D(label="3D Model", clear_color=[1.0, 1.0, 1.0, 1.0], key="Img3D", elem_classes="centered solid imgcontainer",interactive=True) |
|
model_file = gr.File(label="3D GLTF", elem_classes="solid small centered") |
|
with gr.Row(): |
|
gr.Examples(examples=[ |
|
["assets//examples//hex_map_p1.png", False, True, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 15], |
|
["assets//examples//hex_map_p1_overlayed.png", False, False, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 75], |
|
["assets//examples//hex_flower_logo.png", False, True, -95,-95,100,100,-24,-2,190,30,2,"#FF8951", 50], |
|
["assets//examples//hexed_fract_1.png", False, True, 0,0,0,0,0,0,10,0,0,"#000000", 5], |
|
["assets//examples//tmpzt3mblvk.png", False, True, -20,10,0,0,-6,-2,35,30,1,"#ffffff", 0], |
|
], |
|
inputs=[input_image, filter_color, fill_hex, start_x, start_y, end_x, end_y, x_spacing, y_spacing, hex_size, rotation, border_size, border_color, border_opacity], |
|
elem_id="examples") |
|
|
|
|
|
with gr.Row(): |
|
gr.HTML(value=getVersions(), visible=True, elem_id="versions") |
|
|
|
color_display.select(on_color_display_select,inputs=[color_display], outputs=[selected_row]) |
|
color_display.input(on_input,inputs=[color_display], outputs=[color_display, gr.State(excluded_color_list)]) |
|
|
|
delete_button.click(fn=delete_color, inputs=[selected_row, color_display], outputs=[color_display]) |
|
exclude_color_button.click(fn=add_color, inputs=[color_picker, gr.State(excluded_color_list)], outputs=[color_display, gr.State(excluded_color_list)]) |
|
hex_button.click( |
|
fn=lambda hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list: |
|
gr.Warning("Please upload an Input Image to get started.") if input_image is None else hex_create(hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list), |
|
inputs=[hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list], |
|
outputs=[output_image, overlay_image], |
|
scroll_to_output=True |
|
) |
|
generate_input_image.click( |
|
fn=generate_input_image_click, |
|
inputs=[input_image,map_options, prompt_textbox, negative_prompt_textbox, model_textbox, randomize_seed, seed_slider, gr.State(False), gr.State(0.5), image_size_ratio], |
|
outputs=[input_image, seed_slider], scroll_to_output=True |
|
) |
|
generate_depth_button.click( |
|
fn=generate_depth_button_click, |
|
inputs=[depth_image_source, resized_width_slider, z_scale_slider, input_image, output_image, overlay_image, bordered_image_output], |
|
outputs=[depth_map_output, model_output, model_file], scroll_to_output=True |
|
) |
|
model_textbox.change( |
|
fn=update_prompt_notes, |
|
inputs=model_textbox, |
|
outputs=prompt_notes_label,preprocess=False |
|
) |
|
model_options.change( |
|
fn=lambda x: (gr.update(visible=(x == "Manual Entry")), gr.update(value=x) if x != "Manual Entry" else gr.update()), |
|
inputs=model_options, |
|
outputs=[model_textbox, model_textbox] |
|
) |
|
model_options.change( |
|
fn=update_prompt_notes, |
|
inputs=model_options, |
|
outputs=prompt_notes_label |
|
) |
|
composite_button.click( |
|
fn=lambda input_image, composite_color, composite_opacity: gr.Warning("Please upload an Input Image to get started.") if input_image is None else change_color(input_image, composite_color, composite_opacity), |
|
inputs=[input_image, composite_color, composite_opacity], |
|
outputs=[input_image] |
|
) |
|
|
|
|
|
generate_input_image_from_gallery.click( |
|
fn=generate_input_image_click, |
|
inputs=[input_image, map_options, prompt_textbox, negative_prompt_textbox, model_textbox,randomize_seed, seed_slider, gr.State(True), image_guidance_stength, image_size_ratio], |
|
outputs=[input_image, seed_slider], scroll_to_output=True |
|
) |
|
|
|
|
|
prerendered_image_gallery.select( |
|
fn=on_prerendered_gallery_selection, |
|
inputs=None, |
|
outputs=[gr.State(current_prerendered_image)], |
|
show_api=False |
|
) |
|
|
|
replace_input_image_button.click( |
|
lambda: current_prerendered_image.value, |
|
inputs=None, |
|
outputs=[input_image], scroll_to_output=True |
|
) |
|
output_overlay_composite.change( |
|
fn=combine_images_with_lerp, |
|
inputs=[input_image, output_image, output_overlay_composite], |
|
outputs=[overlay_image], scroll_to_output=True |
|
) |
|
output_blend_multiply_composite.change( |
|
fn=multiply_and_blend_images, |
|
inputs=[input_image, output_image, output_blend_multiply_composite], |
|
outputs=[overlay_image], |
|
scroll_to_output=True |
|
) |
|
output_alpha_composite.change( |
|
fn=alpha_composite_with_control, |
|
inputs=[input_image, output_image, output_alpha_composite], |
|
outputs=[overlay_image], |
|
scroll_to_output=True |
|
) |
|
add_border_button.click( |
|
fn=lambda image_source, mask_w, mask_h, color, opacity, input_img, overlay_img: add_border(input_img if image_source == "Input Image" else overlay_img, mask_w, mask_h, update_color_opacity(detect_color_format(color), opacity * 2.55)), |
|
inputs=[border_image_source, mask_width, mask_height, margin_color, margin_opacity, input_image, overlay_image], |
|
outputs=[bordered_image_output], |
|
scroll_to_output=True |
|
) |
|
|
|
if __name__ == "__main__": |
|
constants.load_env_vars(constants.dotenv_path) |
|
logging.basicConfig( |
|
format="[%(levelname)s] %(asctime)s %(message)s", level=logging.INFO |
|
) |
|
logging.info("Environment Variables: %s" % os.environ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hexaGrid.queue(default_concurrency_limit=1,max_size=12,api_open=False) |
|
hexaGrid.launch(allowed_paths=["assets","/","./assets","images","./images", "./images/prerendered"], favicon_path="./assets/favicon.ico", max_file_size="10mb") |
|
|
|
|