HexaGrid / app.py
Surn's picture
Gradio 5.19.0
3dd8887
raw
history blame
59.8 kB
import gradio as gr
import os
# Import constants
import numpy as np
import torch
from typing import Optional, Union, List, Tuple
from PIL import Image, ImageFilter
import cv2
import utils.constants as constants
from haishoku.haishoku import Haishoku
from tempfile import NamedTemporaryFile
import atexit
import random
#import accelerate
from transformers import AutoTokenizer , DPTImageProcessor, DPTForDepthEstimation
from pathlib import Path
import logging
#logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
import gc
IS_SHARED_SPACE = constants.IS_SHARED_SPACE
# Import functions from modules
from utils.file_utils import cleanup_temp_files
from utils.color_utils import (
hex_to_rgb,
detect_color_format,
update_color_opacity,
)
from utils.misc import (get_filename, pause, convert_ratio_to_dimensions) #install_cuda_toolkit,install_torch, _get_output, setup_runtime_env)
from utils.image_utils import (
change_color,
open_image,
build_prerendered_images_by_quality,
upscale_image,
lerp_imagemath,
shrink_and_paste_on_blank,
show_lut,
apply_lut_to_image_path,
multiply_and_blend_images,
alpha_composite_with_control,
crop_and_resize_image,
convert_to_rgba_png,
resize_image_with_aspect_ratio,
build_prerendered_images_by_quality,
get_image_from_dict
)
from utils.hex_grid import (
generate_hexagon_grid,
generate_hexagon_grid_interface,
)
from utils.excluded_colors import (
add_color,
delete_color,
build_dataframe,
on_input,
excluded_color_list,
on_color_display_select
)
# from utils.ai_generator import (
# generate_ai_image,
# )
from utils.lora_details import (
upd_prompt_notes,
split_prompt_precisely,
approximate_token_count,
get_trigger_words
)
from diffusers import FluxPipeline,FluxImg2ImgPipeline,FluxControlPipeline
PIPELINE_CLASSES = {
"FluxPipeline": FluxPipeline,
"FluxImg2ImgPipeline": FluxImg2ImgPipeline,
"FluxControlPipeline": FluxControlPipeline
}
from utils.version_info import (
versions_html,
#initialize_cuda,
#release_torch_resources,
#get_torch_info
)
import spaces
input_image_palette = []
current_prerendered_image = gr.State("./images/images/Beeuty-1.png")
# Register the cleanup function
atexit.register(cleanup_temp_files)
def hex_create(hex_size, border_size, input_image_path, start_x, start_y, end_x, end_y, rotation, background_color_hex, background_opacity, border_color_hex, border_opacity, fill_hex, excluded_colors_var, filter_color, x_spacing, y_spacing, add_hex_text_option=None, custom_text_list=None, custom_text_color_list=None):
global input_image_palette
try:
# Load and process the input image
input_image = Image.open(input_image_path).convert("RGBA")
except Exception as e:
print(f"Failed to convert image to RGBA: {e}")
# Open the original image without conversion
input_image = Image.open(input_image_path)
# Ensure the canvas is at least 1344x768 pixels
min_width, min_height = 1344, 768
canvas_width = max(min_width, input_image.width)
canvas_height = max(min_height, input_image.height)
# Create a transparent canvas with the required dimensions
new_canvas = Image.new("RGBA", (canvas_width, canvas_height), (0, 0, 0, 0))
# Calculate position to center the input image on the canvas
paste_x = (canvas_width - input_image.width) // 2
paste_y = (canvas_height - input_image.height) // 2
# Paste the input image onto the canvas
new_canvas.paste(input_image, (paste_x, paste_y))
# Save the 'RGBA' image to a temporary file and update 'input_image_path'
with NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
new_canvas.save(tmp_file.name, format="PNG")
input_image_path = tmp_file.name
constants.temp_files.append(tmp_file.name)
# Update 'input_image' with the new image as a file path
input_image = Image.open(input_image_path)
# Use Haishoku to get the palette from the new image
input_palette = Haishoku.loadHaishoku(input_image_path)
input_image_palette = input_palette.palette
# Update colors with opacity
background_color = update_color_opacity(
hex_to_rgb(background_color_hex),
int(background_opacity * (255 / 100))
)
border_color = update_color_opacity(
hex_to_rgb(border_color_hex),
int(border_opacity * (255 / 100))
)
# Prepare excluded colors list
excluded_color_list = [tuple(lst) for lst in excluded_colors_var]
# Generate the hexagon grid images
grid_image = generate_hexagon_grid_interface(
hex_size,
border_size,
input_image,
start_x,
start_y,
end_x,
end_y,
rotation,
background_color,
border_color,
fill_hex,
excluded_color_list,
filter_color,
x_spacing,
y_spacing,
add_hex_text_option,
custom_text_list,
custom_text_color_list
)
return grid_image
def get_model_and_lora(model_textbox):
"""
Determines the model and LoRA weights based on the model_textbox input.
wieghts must be in an array ["Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1"]
"""
# If the input is in the list of models, return it with None as LoRA weights
if model_textbox in constants.MODELS:
return model_textbox, []
# If the input is in the list of LoRA weights, get the corresponding model
elif model_textbox in constants.LORA_WEIGHTS:
model = constants.LORA_TO_MODEL.get(model_textbox)
return model, model_textbox.split()
else:
# Default to a known model if input is unrecognized
default_model = model_textbox
return default_model, []
condition_dict = {
"depth": 0,
"canny": 1,
"subject": 4,
"coloring": 6,
"deblurring": 7,
"fill": 9,
}
# @spaces.GPU(duration=140, progress=gr.Progress(track_tqdm=True))
# def generate_image(pipe, generate_params, progress=gr.Progress(track_tqdm=True)):
# return pipe(**generate_params)
@spaces.GPU(duration=200, progress=gr.Progress(track_tqdm=True))
def generate_image_lowmem(
text,
neg_prompt=None,
model_name="black-forest-labs/FLUX.1-dev",
lora_weights=None,
conditioned_image=None,
image_width=1368,
image_height=848,
guidance_scale=3.5,
num_inference_steps=30,
seed=0,
true_cfg_scale=1.0,
pipeline_name="FluxPipeline",
strength=0.75,
additional_parameters=None,
progress=gr.Progress(track_tqdm=True)
):
#from torch import cuda, bfloat16, float32, Generator, no_grad, backends
# Retrieve the pipeline class from the mapping
pipeline_class = PIPELINE_CLASSES.get(pipeline_name)
if not pipeline_class:
raise ValueError(f"Unsupported pipeline type '{pipeline_name}'. "
f"Available options: {list(PIPELINE_CLASSES.keys())}")
#initialize_cuda()
device = "cuda" if torch.cuda.is_available() else "cpu"
from src.condition import Condition
print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n")
#print(f"\n {get_torch_info()}\n")
# Disable gradient calculations
with torch.no_grad():
# Initialize the pipeline inside the context manager
pipe = pipeline_class.from_pretrained(
model_name,
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
).to(device)
# Optionally, don't use CPU offload if not necessary
# alternative version that may be more efficient
# pipe.enable_sequential_cpu_offload()
if pipeline_name == "FluxPipeline":
pipe.enable_model_cpu_offload()
pipe.vae.enable_slicing()
#pipe.vae.enable_tiling()
else:
pipe.enable_model_cpu_offload()
# Access the tokenizer from the pipeline
tokenizer = pipe.tokenizer
# Check if add_prefix_space is set and convert to slow tokenizer if necessary
if getattr(tokenizer, 'add_prefix_space', False):
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, device_map = 'cpu')
# Update the pipeline's tokenizer
pipe.tokenizer = tokenizer
pipe.to(device)
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
if flash_attention_enabled == False:
#Enable xFormers memory-efficient attention (optional)
#pipe.enable_xformers_memory_efficient_attention()
print("\nEnabled xFormers memory-efficient attention.\n")
else:
pipe.attn_implementation="flash_attention_2"
print("\nEnabled flash_attention_2.\n")
condition_type = "subject"
# Load LoRA weights
# note: does not yet handle multiple LoRA weights with different names, needs .set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125])
if lora_weights:
for lora_weight in lora_weights:
lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
lora_weight_set = False
if lora_configs:
for config in lora_configs:
# Load LoRA weights with optional weight_name and adapter_name
if 'weight_name' in config:
weight_name = config.get("weight_name")
adapter_name = config.get("adapter_name")
lora_collection = config.get("lora_collection")
if weight_name and adapter_name and lora_collection and lora_weight_set == False:
pipe.load_lora_weights(
lora_collection,
weight_name=weight_name,
adapter_name=adapter_name,
token=constants.HF_API_TOKEN
)
lora_weight_set = True
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
elif weight_name and adapter_name==None and lora_collection and lora_weight_set == False:
pipe.load_lora_weights(
lora_collection,
weight_name=weight_name,
token=constants.HF_API_TOKEN
)
lora_weight_set = True
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
elif weight_name and adapter_name and lora_weight_set == False:
pipe.load_lora_weights(
lora_weight,
weight_name=weight_name,
adapter_name=adapter_name,
token=constants.HF_API_TOKEN
)
lora_weight_set = True
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
elif weight_name and adapter_name==None and lora_weight_set == False:
pipe.load_lora_weights(
lora_weight,
weight_name=weight_name,
token=constants.HF_API_TOKEN
)
lora_weight_set = True
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
elif lora_weight_set == False:
pipe.load_lora_weights(
lora_weight,
token=constants.HF_API_TOKEN
)
lora_weight_set = True
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
# Apply 'pipe' configurations if present
if 'pipe' in config:
pipe_config = config['pipe']
for method_name, params in pipe_config.items():
method = getattr(pipe, method_name, None)
if method:
print(f"Applying pipe method: {method_name} with params: {params}")
method(**params)
else:
print(f"Method {method_name} not found in pipe.")
if 'condition_type' in config:
condition_type = config['condition_type']
if condition_type == "coloring":
#pipe.enable_coloring()
print("\nEnabled coloring.\n")
elif condition_type == "deblurring":
#pipe.enable_deblurring()
print("\nEnabled deblurring.\n")
elif condition_type == "fill":
#pipe.enable_fill()
print("\nEnabled fill.\n")
elif condition_type == "depth":
#pipe.enable_depth()
print("\nEnabled depth.\n")
elif condition_type == "canny":
#pipe.enable_canny()
print("\nEnabled canny.\n")
elif condition_type == "subject":
#pipe.enable_subject()
print("\nEnabled subject.\n")
else:
print(f"Condition type {condition_type} not implemented.")
else:
pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
# Set the random seed for reproducibility
generator = torch.Generator(device=device).manual_seed(seed)
conditions = []
if conditioned_image is not None:
conditioned_image = crop_and_resize_image(conditioned_image, image_width, image_height)
condition = Condition(condition_type, conditioned_image)
conditions.append(condition)
print(f"\nAdded conditioned image.\n {conditioned_image.size}")
# Prepare the parameters for image generation
additional_parameters ={
"strength": strength,
"image": conditioned_image,
}
else:
print("\nNo conditioned image provided.")
if neg_prompt!=None:
true_cfg_scale=1.1
additional_parameters ={
"negative_prompt": neg_prompt,
"true_cfg_scale": true_cfg_scale,
}
# handle long prompts by splitting them
if approximate_token_count(text) > 76:
prompt, prompt2 = split_prompt_precisely(text)
prompt_parameters = {
"prompt" : prompt,
"prompt_2": prompt2
}
else:
prompt_parameters = {
"prompt" :text
}
additional_parameters.update(prompt_parameters)
# Combine all parameters
generate_params = {
"height": image_height,
"width": image_width,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator, }
if additional_parameters:
generate_params.update(additional_parameters)
generate_params = {k: v for k, v in generate_params.items() if v is not None}
print(f"generate_params: {generate_params}")
# Generate the image
result = pipe(**generate_params) #generate_image(pipe,generate_params)
image = result.images[0]
# Clean up
del result
del conditions
del generator
# Delete the pipeline and clear cache
del pipe
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
print(torch.cuda.memory_summary(device=None, abbreviated=False))
return image
def generate_ai_image_local (
map_option,
prompt_textbox_value,
neg_prompt_textbox_value,
model="black-forest-labs/FLUX.1-dev",
lora_weights=None,
conditioned_image=None,
height=512,
width=912,
num_inference_steps=30,
guidance_scale=3.5,
seed=777,
pipeline_name="FluxPipeline",
strength=0.75,
progress=gr.Progress(track_tqdm=True)
):
print(f"Generating image with lowmem")
try:
if map_option != "Prompt":
prompt = constants.PROMPTS[map_option]
negative_prompt = constants.NEGATIVE_PROMPTS.get(map_option, "")
else:
prompt = prompt_textbox_value
negative_prompt = neg_prompt_textbox_value or ""
#full_prompt = f"{prompt} {negative_prompt}"
additional_parameters = {}
if lora_weights:
for lora_weight in lora_weights:
lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
for config in lora_configs:
if 'parameters' in config:
additional_parameters.update(config['parameters'])
elif 'trigger_words' in config:
trigger_words = get_trigger_words(lora_weight)
prompt = f"{trigger_words} {prompt}"
for key, value in additional_parameters.items():
if key in ['height', 'width', 'num_inference_steps', 'max_sequence_length']:
additional_parameters[key] = int(value)
elif key in ['guidance_scale','true_cfg_scale']:
additional_parameters[key] = float(value)
height = additional_parameters.pop('height', height)
width = additional_parameters.pop('width', width)
num_inference_steps = additional_parameters.pop('num_inference_steps', num_inference_steps)
guidance_scale = additional_parameters.pop('guidance_scale', guidance_scale)
print("Generating image with the following parameters:\n")
print(f"Model: {model}")
print(f"LoRA Weights: {lora_weights}")
print(f"Prompt: {prompt}")
print(f"Neg Prompt: {negative_prompt}")
print(f"Height: {height}")
print(f"Width: {width}")
print(f"Number of Inference Steps: {num_inference_steps}")
print(f"Guidance Scale: {guidance_scale}")
print(f"Seed: {seed}")
print(f"Additional Parameters: {additional_parameters}")
print(f"Conditioned Image: {conditioned_image}")
print(f"Conditioned Image Strength: {strength}")
print(f"pipeline: {pipeline_name}")
image = generate_image_lowmem(
text=prompt,
model_name=model,
neg_prompt=negative_prompt,
lora_weights=lora_weights,
conditioned_image=conditioned_image,
image_width=width,
image_height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
seed=seed,
pipeline_name=pipeline_name,
strength=strength,
additional_parameters=additional_parameters
)
with NamedTemporaryFile(delete=False, suffix=".png") as tmp:
image.save(tmp.name, format="PNG")
constants.temp_files.append(tmp.name)
print(f"Image saved to {tmp.name}")
return tmp.name
except Exception as e:
print(f"Error generating AI image: {e}")
#gc.collect()
return None
def generate_input_image_click(image_input, map_option, prompt_textbox_value, negative_prompt_textbox_value, model_textbox_value, randomize_seed=True, seed=None, use_conditioned_image=False, strength=0.5, image_format="16:9", scale_factor=(8/3), progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, constants.MAX_SEED)
# Get the model and LoRA weights
model, lora_weights = get_model_and_lora(model_textbox_value)
global current_prerendered_image
conditioned_image=None
formatted_map_option = map_option.lower().replace(' ', '_')
if use_conditioned_image:
print(f"Conditioned path: {current_prerendered_image.value}.. converting to RGB\n")
# ensure the conditioned image is an image and not a string, cannot use RGBA
if isinstance(current_prerendered_image.value, str):
conditioned_image = open_image(current_prerendered_image.value).convert("RGB")
print(f"Conditioned Image: {conditioned_image.size}.. converted to RGB\n")
# use image_input as the conditioned_image if it is not None
elif image_input is not None:
conditioned_image = open_image(image_input).convert("RGB")
print(f"Conditioned Image set to modify Input Image!\nClear to generate new image.")
gr.Info("Conditioned Image set to modify Input Image! Clear to generate new image",duration=5)
# Convert image_format from a string split by ":" into two numbers divided
width_ratio, height_ratio = map(int, image_format.split(":"))
aspect_ratio = width_ratio / height_ratio
width, height = convert_ratio_to_dimensions(aspect_ratio, 576)
pipeline = "FluxPipeline"
if conditioned_image is not None:
pipeline = "FluxImg2ImgPipeline"
# Generate the AI image and get the image path
image_path = generate_ai_image_local(
map_option,
prompt_textbox_value,
negative_prompt_textbox_value,
model,
lora_weights,
conditioned_image,
strength=strength,
height=height,
width=width,
seed=seed,
pipeline_name=pipeline,
)
# Open the generated image
try:
image = Image.open(image_path).convert("RGBA")
except Exception as e:
print(f"Failed to open generated image: {e}")
return image_path, seed # Return the original image path if opening fails
# Upscale the image
upscaled_image = upscale_image(image, scale_factor)
# Save the upscaled image to a temporary file
with NamedTemporaryFile(delete=False, suffix=".png", prefix=f"{formatted_map_option}_") as tmp_upscaled:
upscaled_image.save(tmp_upscaled.name, format="PNG")
constants.temp_files.append(tmp_upscaled.name)
print(f"Upscaled image saved to {tmp_upscaled.name}")
gc.collect()
# Return the path of the upscaled image
return tmp_upscaled.name, seed
def update_prompt_visibility(map_option):
is_visible = (map_option == "Prompt")
return (
gr.update(visible=is_visible),
gr.update(visible=is_visible),
gr.update(visible=is_visible)
)
def update_prompt_notes(model_textbox_value):
return upd_prompt_notes(model_textbox_value)
def on_prerendered_gallery_selection(event_data: gr.SelectData):
global current_prerendered_image
selected_index = event_data.index
selected_image = constants.pre_rendered_maps_paths[selected_index]
print(f"Template Image Selected: {selected_image} ({event_data.index})\n")
gr.Info(f"Template Image Selected: {selected_image} ({event_data.index})",duration=5)
current_prerendered_image.value = selected_image
return current_prerendered_image
def combine_images_with_lerp(input_image, output_image, alpha):
in_image = open_image(input_image)
out_image = open_image(output_image)
print(f"Combining images with alpha: {alpha}")
return lerp_imagemath(in_image, out_image, alpha)
def add_border(image, mask_width, mask_height, blank_color):
bordered_image_output = Image.open(image).convert("RGBA")
margin_color = detect_color_format(blank_color)
print(f"Adding border to image with width: {mask_width}, height: {mask_height}, color: {margin_color}")
return shrink_and_paste_on_blank(bordered_image_output, mask_width, mask_height, margin_color)
################################## DEPTH ESTIMATION ##################################
#-------------- ------------------------------------------------MODEL INITIALIZATION------------------------------------------------------------#
# Load models once during module import
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large",)
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large", ignore_mismatched_sizes=True)
def create_3d_obj(rgb_image, raw_depth, image_path, depth=10, z_scale=200):
"""
Creates a 3D object from RGB and depth images.
Args:
rgb_image (np.ndarray): The RGB image as a NumPy array.
raw_depth (np.ndarray): The raw depth data.
image_path (Path): The path to the original image.
depth (int, optional): Depth parameter for Poisson reconstruction. Defaults to 10.
z_scale (float, optional): Scaling factor for the Z-axis. Defaults to 200.
Returns:
str: The file path to the saved GLTF model.
"""
import open3d as o3d
# Normalize the depth image
depth_image = ((raw_depth - raw_depth.min()) / (raw_depth.max() - raw_depth.min()) * 255).astype("uint8")
depth_o3d = o3d.geometry.Image(depth_image)
image_o3d = o3d.geometry.Image(rgb_image)
# Create RGBD image
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
image_o3d, depth_o3d, convert_rgb_to_intensity=False
)
height, width = depth_image.shape
# Define camera intrinsics
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic(
width,
height,
fx=z_scale,
fy=z_scale,
cx=width / 2.0,
cy=height / 2.0,
)
# Generate point cloud from RGBD image
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)
# Scale the Z dimension
points = np.asarray(pcd.points)
depth_scaled = ((raw_depth - raw_depth.min()) / (raw_depth.max() - raw_depth.min())) * (z_scale*100)
z_values = depth_scaled.flatten()[:len(points)]
points[:, 2] *= z_values
pcd.points = o3d.utility.Vector3dVector(points)
# Estimate and orient normals
pcd.estimate_normals(
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=60)
)
pcd.orient_normals_towards_camera_location(camera_location=np.array([0.0, 0.0, 1.5 ]))
# Apply transformations
pcd.transform([[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
pcd.transform([[-1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
# Perform Poisson surface reconstruction
print(f"Running Poisson surface reconstruction with depth {depth}")
mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
pcd, depth=depth, width=0, scale=1.1, linear_fit=True
)
print(f"Raw mesh vertices: {len(mesh_raw.vertices)}, triangles: {len(mesh_raw.triangles)}")
# Simplify the mesh using vertex clustering
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / (max(width, height) * 0.8)
mesh = mesh_raw.simplify_vertex_clustering(
voxel_size=voxel_size,
contraction=o3d.geometry.SimplificationContraction.Average,
)
print(f"Simplified mesh vertices: {len(mesh.vertices)}, triangles: {len(mesh.triangles)}")
# Crop the mesh to the bounding box of the point cloud
bbox = pcd.get_axis_aligned_bounding_box()
mesh_crop = mesh.crop(bbox)
# Save the mesh as a GLTF file
temp_dir = Path.cwd() / "models"
temp_dir.mkdir(exist_ok=True)
gltf_path = str(temp_dir / f"{image_path.stem}.gltf")
o3d.io.write_triangle_mesh(gltf_path, mesh_crop, write_triangle_uvs=True)
return gltf_path
@spaces.GPU()
def depth_process_image(image_path, resized_width=800, z_scale=208):
"""
Processes the input image to generate a depth map and a 3D mesh reconstruction.
Args:
image_path (str): The file path to the input image.
Returns:
list: A list containing the depth image, 3D mesh reconstruction, and GLTF file path.
"""
image_path = Path(image_path)
if not image_path.exists():
raise ValueError("Image file not found")
# Load and resize the image
image_raw = Image.open(image_path).convert("RGB")
print(f"Original size: {image_raw.size}")
resized_height = int(resized_width * image_raw.size[1] / image_raw.size[0])
image = image_raw.resize((resized_width, resized_height), Image.Resampling.LANCZOS)
print(f"Resized size: {image.size}")
# Prepare image for the model
encoding = image_processor(image, return_tensors="pt")
# Perform depth estimation
with torch.no_grad():
outputs = depth_model(**encoding)
predicted_depth = outputs.predicted_depth
# Interpolate depth to match the image size
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=(image.height, image.width),
mode="bicubic",
align_corners=False,
).squeeze()
# Normalize the depth image to 8-bit
if torch.cuda.is_available():
prediction = prediction.numpy()
else:
prediction = prediction.cpu().numpy()
depth_min, depth_max = prediction.min(), prediction.max()
depth_image = ((prediction - depth_min) / (depth_max - depth_min) * 255).astype("uint8")
try:
gltf_path = create_3d_obj(np.array(image), prediction, image_path, depth=10, z_scale=z_scale)
except Exception:
gltf_path = create_3d_obj(np.array(image), prediction, image_path, depth=8, z_scale=z_scale)
img = Image.fromarray(depth_image)
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
return [img, gltf_path, gltf_path]
def generate_depth_and_3d(input_image_path, resize_width=800, z_scale=1.0):
return depth_process_image(input_image_path, resize_width, z_scale)
def generate_depth_button_click(depth_image_source, resize_width, z_scale, input_image, output_image, overlay_image, bordered_image_output):
if depth_image_source == "Input Image":
image_path = input_image
elif depth_image_source == "Output Image":
image_path = output_image
elif depth_image_source == "Image with Margins":
image_path = bordered_image_output
else:
image_path = overlay_image
return generate_depth_and_3d(image_path, resize_width, z_scale)
@spaces.GPU()
def getVersions():
return versions_html()
#generate_input_image_click.zerogpu = True
#generate_depth_button_click.zerogpu = True
#def main(debug=False):
title = "HexaGrid Creator"
#description = "Customizable Hexagon Grid Image Generator"
examples = [["assets//examples//hex_map_p1.png", 32, 1, 0, 0, 0, 0, 0, "#ede9ac44","#12165380", True]]
gr.set_static_paths(paths=["images/","images/images","images/prerendered","LUT/","fonts/","assets/"])
# Gradio Blocks Interface
with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty',delete_cache=(21600,86400)) as hexaGrid:
with gr.Row():
gr.Markdown("""
# HexaGrid Creator
## Transform Your Images into Mesmerizing Hexagon Grid Masterpieces! ⬢""", elem_classes="intro")
with gr.Row():
with gr.Accordion("Welcome to HexaGrid Creator, the ultimate tool for transforming your images into stunning hexagon grid artworks. Whether you're a tabletop game enthusiast, a digital artist, or someone who loves unique patterns, HexaGrid Creator has something for you.", open=False, elem_classes="intro"):
gr.Markdown ("""
## Drop an image into the Input Image and get started!
## What is HexaGrid Creator?
HexaGrid Creator is a web-based application that allows you to apply a hexagon grid overlay to any image. You can customize the size, color, and opacity of the hexagons, as well as the background and border colors. The result is a visually striking image that looks like it was made from hexagonal tiles!
### What Can You Do?
- **Generate Hexagon Grids:** Create beautiful hexagon grid overlays on any image with fully customizable parameters.
- **AI-Powered Image Generation:** Use advanced AI models to generate images based on your prompts and apply hexagon grids to them.
- **Color Exclusion:** Select and exclude specific colors from your hexagon grid for a cleaner and more refined look.
- **Interactive Customization:** Adjust hexagon size, border size, rotation, background color, and more in real-time.
- **Depth and 3D Model Generation:** Generate depth maps and 3D models from your images for enhanced visualization.
- **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement.
- **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization.
- **Add Margins:** Add customizable margins around your images for a polished finish.
### Why You'll Love It
- **Fun and Easy to Use:** With an intuitive interface and real-time previews, creating hexagon grids has never been this fun!
- **Endless Creativity:** Unleash your creativity with endless customization options and see your images transform in unique ways.
- **Hexagon-Inspired Theme:** Enjoy a delightful yellow and purple theme inspired by hexagons! ⬢
- **Advanced AI Models:** Leverage advanced AI models and LoRA weights for high-quality image generation and customization.
### Get Started
1. **Upload or Generate an Image:** Start by uploading your own image or generate one using our AI-powered tool.
2. **Customize Your Grid:** Play around with the settings to create the perfect hexagon grid overlay.
3. **Download and Share:** Once you're happy with your creation, download it and share it with the world!
### Advanced Features
- **Generative AI Integration:** Utilize models like `black-forest-labs/FLUX.1-dev` and various LoRA weights for generating unique images.
- **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization.
- **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement.
- **Depth and 3D Model Generation:** Create depth maps and 3D models from your images for enhanced visualization.
- **Add Margins:** Customize margins around your images for a polished finish.
Join the hive and start creating with HexaGrid Creator today!
""", elem_classes="intro")
with gr.Row():
with gr.Column(scale=2):
input_image = gr.Image(
label="Input Image",
type="filepath",
interactive=True,
elem_classes="centered solid imgcontainer",
key="imgInput",
image_mode=None,
format="PNG"
)
# New code to convert input image to RGBA PNG
def on_input_image_change(image_path):
if image_path is None:
gr.Warning("Please upload an Input Image to get started.")
return None
img, img_path = convert_to_rgba_png(image_path)
return img_path
input_image.change(
fn=on_input_image_change,
inputs=[input_image],
outputs=[input_image], scroll_to_output=True,
)
with gr.Column():
with gr.Accordion("Hex Coloring and Exclusion", open = False):
with gr.Row():
with gr.Column():
color_picker = gr.ColorPicker(label="Pick a color to exclude",value="#505050")
with gr.Column():
filter_color = gr.Checkbox(label="Filter Excluded Colors from Sampling", value=False,)
exclude_color_button = gr.Button("Exclude Color", elem_id="exlude_color_button", elem_classes="solid")
color_display = gr.DataFrame(label="List of Excluded RGBA Colors", headers=["R", "G", "B", "A"], elem_id="excluded_colors", type="array", value=build_dataframe(excluded_color_list), interactive=True, elem_classes="solid centered")
selected_row = gr.Number(0, label="Selected Row", visible=False)
delete_button = gr.Button("Delete Row", elem_id="delete_exclusion_button", elem_classes="solid")
fill_hex = gr.Checkbox(label="Fill Hex with color from Image", value=True)
with gr.Accordion("Image Filters", open = False):
with gr.Row():
with gr.Column():
composite_color = gr.ColorPicker(label="Color", value="#ede9ac44")
with gr.Column():
composite_opacity = gr.Slider(label="Opacity %", minimum=0, maximum=100, value=50, interactive=True)
with gr.Row():
composite_button = gr.Button("Composite", elem_classes="solid")
with gr.Row():
with gr.Column():
lut_filename = gr.Textbox(
value="",
label="Look Up Table (LUT) File Name",
elem_id="lutFileName")
with gr.Column():
lut_file = gr.File(
value=None,
file_count="single",
file_types=[".cube"],
type="filepath",
label="LUT cube File")
with gr.Row():
lut_example_image = gr.Image(type="pil", label="Filter (LUT) Example Image", value=constants.default_lut_example_img)
with gr.Row():
with gr.Column():
gr.Markdown("""
### Included Filters (LUTs)
There are several included Filters:
Try them on the example image before applying to your Input Image.
""", elem_id="lut_markdown")
with gr.Column():
gr.Examples(elem_id="lut_examples",
examples=[[f] for f in constants.lut_files],
inputs=[lut_filename],
outputs=[lut_filename],
label="Select a Filter (LUT) file. Populate the LUT File Name field"
)
with gr.Row():
apply_lut_button = gr.Button("Apply Filter (LUT)", elem_classes="solid", elem_id="apply_lut_button")
lut_file.change(get_filename, inputs=[lut_file], outputs=[lut_filename])
lut_filename.change(show_lut, inputs=[lut_filename, lut_example_image], outputs=[lut_example_image])
apply_lut_button.click(
lambda lut_filename, input_image: gr.Warning("Please upload an Input Image to get started.") if input_image is None else apply_lut_to_image_path(lut_filename, input_image)[0],
inputs=[lut_filename, input_image],
outputs=[input_image],
scroll_to_output=True
)
with gr.Row():
with gr.Accordion("Generate AI Image (click here for options)", open = False):
with gr.Row():
with gr.Column():
model_options = gr.Dropdown(
label="Choose an AI Model*",
choices=constants.MODELS + constants.LORA_WEIGHTS + ["Manual Entry"],
value="Cossale/Frames2-Flex.1",
elem_classes="solid"
)
model_textbox = gr.Textbox(
label="LORA/Model",
value="Cossale/Frames2-Flex.1",
elem_classes="solid",
elem_id="inference_model",
visible=False
)
# Update map_options to a Dropdown with choices from constants.PROMPTS keys
with gr.Row():
with gr.Column():
map_options = gr.Dropdown(
label="Map Options*",
choices=list(constants.PROMPTS.keys()),
value="Alien Landscape",
elem_classes="solid",
scale=0
)
# Add Dropdown for sizing of Images, height and width based on selection. Options are 16x9, 16x10, 4x5, 1x1
# The values of height and width are based on common resolutions for each aspect ratio
# Default to 16x9, 912x512
image_size_ratio = gr.Dropdown(label="Image Aspect Ratio", choices=["16:9", "16:10", "4:5", "4:3", "2:1","3:2","1:1", "9:16", "10:16", "5:4", "3:4","1:2", "2:3"], value="16:9", elem_classes="solid", type="value", scale=0, interactive=True)
with gr.Column():
seed_slider = gr.Slider(
label="Seed",
minimum=0,
maximum=constants.MAX_SEED,
step=1,
value=0,
scale=0, randomize=True, elem_id="rnd_seed"
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False, scale=0, interactive=True)
prompt_textbox = gr.Textbox(
label="Prompt",
visible=False,
elem_classes="solid",
value="top-down, (rectangular tabletop_map) alien planet map, Battletech_boardgame scifi world with forests, lakes, oceans, continents and snow at the top and bottom, (middle is dark, no_reflections, no_shadows), from directly above. From 100,000 feet looking straight down",
lines=4
)
negative_prompt_textbox = gr.Textbox(
label="Negative Prompt",
visible=False,
elem_classes="solid",
value="Earth, low quality, bad anatomy, blurry, cropped, worst quality, shadows, people, humans, reflections, shadows, realistic map of the Earth, isometric, text"
)
prompt_notes_label = gr.Label(
"You should use FRM$ as trigger words. @1.5 minutes",
elem_classes="solid centered small",
show_label=False,
visible=False
)
# Keep the change event to maintain functionality
map_options.change(
fn=update_prompt_visibility,
inputs=[map_options],
outputs=[prompt_textbox, negative_prompt_textbox, prompt_notes_label]
)
with gr.Row():
generate_input_image = gr.Button(
"Generate from Input Image & Options ",
elem_id="generate_input_image",
elem_classes="solid"
)
with gr.Column(scale=2):
with gr.Accordion("Template Images", open = False):
with gr.Row():
with gr.Column(scale=2):
# Gallery from PRE_RENDERED_IMAGES GOES HERE
prerendered_image_gallery = gr.Gallery(label="Image Gallery", show_label=True, value=build_prerendered_images_by_quality(3,'thumbnail'), elem_id="gallery", elem_classes="solid", type="filepath", columns=[3], rows=[3], preview=False ,object_fit="contain", height="auto", format="png",allow_preview=False)
with gr.Column():
image_guidance_stength = gr.Slider(label="Image Guidance Strength (prompt percentage)", minimum=0, maximum=1.0, value=0.85, step=0.01, interactive=True)
replace_input_image_button = gr.Button(
"Replace Input Image",
elem_id="prerendered_replace_input_image_button",
elem_classes="solid"
)
generate_input_image_from_gallery = gr.Button(
"Generate AI Image from Template Image & Options",
elem_id="generate_input_image_from_gallery",
elem_classes="solid"
)
with gr.Accordion("Advanced Hexagon Settings", open = False):
with gr.Row():
start_x = gr.Number(label="Start X", value=20, minimum=-512, maximum= 512, precision=0)
start_y = gr.Number(label="Start Y", value=20, minimum=-512, maximum= 512, precision=0)
end_x = gr.Number(label="End X", value=-20, minimum=-512, maximum= 512, precision=0)
end_y = gr.Number(label="End Y", value=-20, minimum=-512, maximum= 512, precision=0)
with gr.Row():
x_spacing = gr.Number(label="Adjust Horizontal spacing", value=-8, minimum=-200, maximum=200, precision=1)
y_spacing = gr.Number(label="Adjust Vertical spacing", value=3, minimum=-200, maximum=200, precision=1)
with gr.Row():
rotation = gr.Slider(-90, 180, 0.0, 0.1, label="Hexagon Rotation (degree)")
add_hex_text = gr.Dropdown(label="Add Text to Hexagons", choices=[None, "Row-Column Coordinates", "Sequential Numbers", "Playing Cards Sequential", "Playing Cards Alternate Red and Black", "Custom List"], value=None)
with gr.Row():
custom_text_list = gr.TextArea(label="Custom Text List", value=constants.cards_alternating, visible=False,)
custom_text_color_list = gr.TextArea(label="Custom Text Color List", value=constants.card_colors_alternating, visible=False)
with gr.Row():
hex_text_info = gr.Markdown("""
### Text Color uses the Border Color and Border Opacity, unless you use a custom list.
### The Custom Text List and Custom Text Color List are comma separated lists.
### The custom color list is a comma separated list of hex colors.
#### Example: "A,2,3,4,5,6,7,8,9,10,J,Q,K", "red,#0000FF,#00FF00,red,#FFFF00,#00FFFF,#FF8000,#FF00FF,#FF0080,#FF8000,#FF0080,lightblue"
""", elem_id="hex_text_info", visible=False)
add_hex_text.change(
fn=lambda x: (
gr.update(visible=(x == "Custom List")),
gr.update(visible=(x == "Custom List")),
gr.update(visible=(x != None))
),
inputs=add_hex_text,
outputs=[custom_text_list, custom_text_color_list, hex_text_info]
)
with gr.Row():
hex_size = gr.Number(label="Hexagon Size", value=90, minimum=1, maximum=768)
border_size = gr.Slider(-5,25,value=2,step=1,label="Border Size")
with gr.Row():
background_color = gr.ColorPicker(label="Background Color", value="#000000", interactive=True)
background_opacity = gr.Slider(0,100,0,1,label="Background Opacity %")
border_color = gr.ColorPicker(label="Border Color", value="#7b7b7b", interactive=True)
border_opacity = gr.Slider(0,100,50,1,label="Border Opacity %")
with gr.Row():
hex_button = gr.Button("Generate Hex Grid!", elem_classes="solid", elem_id="btn-generate")
with gr.Row():
output_image = gr.Image(label="Hexagon Grid Image", image_mode = "RGBA", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOutput",interactive=True)
overlay_image = gr.Image(label="Hexagon Overlay Image", image_mode = "RGBA", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOverlay",interactive=True)
with gr.Row():
output_overlay_composite = gr.Slider(0,100,50,0.5, label="Interpolate Intensity")
output_blend_multiply_composite = gr.Slider(0,100,50,0.5, label="Overlay Intensity")
output_alpha_composite = gr.Slider(0,100,50,0.5, label="Alpha Composite Intensity")
with gr.Accordion("Add Margins (bleed)", open=False):
with gr.Row():
border_image_source = gr.Radio(label="Add Margins around which Image", choices=["Input Image", "Overlay Image"], value="Overlay Image")
with gr.Row():
mask_width = gr.Number(label="Margins Width", value=10, minimum=0, maximum=100, precision=0)
mask_height = gr.Number(label="Margins Height", value=10, minimum=0, maximum=100, precision=0)
with gr.Row():
margin_color = gr.ColorPicker(label="Margin Color", value="#333333FF", interactive=True)
margin_opacity = gr.Slider(0,100,95,0.5,label="Margin Opacity %")
with gr.Row():
add_border_button = gr.Button("Add Margins", elem_classes="solid", variant="secondary")
with gr.Row():
bordered_image_output = gr.Image(label="Image with Margins", image_mode="RGBA", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgBordered",interactive=True)
with gr.Accordion("Height Maps and 3D", open = False):
with gr.Row():
with gr.Column():
resized_width_slider = gr.Slider(
minimum=256,
maximum=1760,
step=16,
value=800,
label="Resized Width",
info="Adjust the width to which the input image is resized."
)
z_scale_slider = gr.Slider(
minimum=0.2,
maximum=3.0,
step=0.01,
value=0.5,
label="Z-Scale",
info="Adjust the scaling factor for the Z-axis in the 3D model."
)
with gr.Column():
depth_image_source = gr.Radio(label="Depth Image Source", choices=["Input Image", "Output Image", "Overlay Image","Image with Margins"], value="Input Image")
with gr.Row():
generate_depth_button = gr.Button("Generate Depth Map and 3D Model From Selected Image", elem_classes="solid", variant="secondary")
with gr.Row():
with gr.Column(scale=1):
depth_map_output = gr.Image(label="Depth Map", image_mode="L", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgDepth",interactive=True)
with gr.Column(scale=2):
model_output = gr.Model3D(label="3D Model", clear_color=[1.0, 1.0, 1.0, 1.0], key="Img3D", elem_classes="centered solid imgcontainer",interactive=True)
model_file = gr.File(label="3D GLTF", elem_classes="solid small centered")
with gr.Row():
gr.Examples(examples=[
["assets//examples//hex_map_p1.png", False, True, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 15],
["assets//examples//hex_map_p1_overlayed.png", False, False, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 75],
["assets//examples//hex_flower_logo.png", False, True, -95,-95,100,100,-24,-2,190,30,2,"#FF8951", 50],
["assets//examples//hexed_fract_1.png", False, True, 0,0,0,0,0,0,10,0,0,"#000000", 5],
["assets//examples//tmpzt3mblvk.png", False, True, -20,10,0,0,-6,-2,35,30,1,"#ffffff", 0],
],
inputs=[input_image, filter_color, fill_hex, start_x, start_y, end_x, end_y, x_spacing, y_spacing, hex_size, rotation, border_size, border_color, border_opacity],
elem_id="examples")
# with gr.Row():
# login_button = gr.LoginButton(size="sm", elem_classes="solid centered", elem_id="hf_login_btn")
with gr.Row():
gr.HTML(value=getVersions(), visible=True, elem_id="versions")
color_display.select(on_color_display_select,inputs=[color_display], outputs=[selected_row])
color_display.input(on_input,inputs=[color_display], outputs=[color_display, gr.State(excluded_color_list)])
delete_button.click(fn=delete_color, inputs=[selected_row, color_display], outputs=[color_display])
exclude_color_button.click(fn=add_color, inputs=[color_picker, gr.State(excluded_color_list)], outputs=[color_display, gr.State(excluded_color_list)])
hex_button.click(
fn=lambda hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list:
gr.Warning("Please upload an Input Image to get started.") if input_image is None else hex_create(hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list),
inputs=[hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list],
outputs=[output_image, overlay_image],
scroll_to_output=True
)
generate_input_image.click(
fn=generate_input_image_click,
inputs=[input_image,map_options, prompt_textbox, negative_prompt_textbox, model_textbox, randomize_seed, seed_slider, gr.State(False), gr.State(0.5), image_size_ratio],
outputs=[input_image, seed_slider], scroll_to_output=True
)
generate_depth_button.click(
fn=generate_depth_button_click,
inputs=[depth_image_source, resized_width_slider, z_scale_slider, input_image, output_image, overlay_image, bordered_image_output],
outputs=[depth_map_output, model_output, model_file], scroll_to_output=True
)
model_textbox.change(
fn=update_prompt_notes,
inputs=model_textbox,
outputs=prompt_notes_label,preprocess=False
)
model_options.change(
fn=lambda x: (gr.update(visible=(x == "Manual Entry")), gr.update(value=x) if x != "Manual Entry" else gr.update()),
inputs=model_options,
outputs=[model_textbox, model_textbox]
)
model_options.change(
fn=update_prompt_notes,
inputs=model_options,
outputs=prompt_notes_label
)
composite_button.click(
fn=lambda input_image, composite_color, composite_opacity: gr.Warning("Please upload an Input Image to get started.") if input_image is None else change_color(input_image, composite_color, composite_opacity),
inputs=[input_image, composite_color, composite_opacity],
outputs=[input_image]
)
#use conditioned_image as the input_image for generate_input_image_click
generate_input_image_from_gallery.click(
fn=generate_input_image_click,
inputs=[input_image, map_options, prompt_textbox, negative_prompt_textbox, model_textbox,randomize_seed, seed_slider, gr.State(True), image_guidance_stength, image_size_ratio],
outputs=[input_image, seed_slider], scroll_to_output=True
)
# Update the state variable with the prerendered image filepath when an image is selected
prerendered_image_gallery.select(
fn=on_prerendered_gallery_selection,
inputs=None,
outputs=[gr.State(current_prerendered_image)], # Update the state with the selected image
show_api=False
)
# replace input image with selected gallery image
replace_input_image_button.click(
lambda: current_prerendered_image.value,
inputs=None,
outputs=[input_image], scroll_to_output=True
)
output_overlay_composite.change(
fn=combine_images_with_lerp,
inputs=[input_image, output_image, output_overlay_composite],
outputs=[overlay_image], scroll_to_output=True
)
output_blend_multiply_composite.change(
fn=multiply_and_blend_images,
inputs=[input_image, output_image, output_blend_multiply_composite],
outputs=[overlay_image],
scroll_to_output=True
)
output_alpha_composite.change(
fn=alpha_composite_with_control,
inputs=[input_image, output_image, output_alpha_composite],
outputs=[overlay_image],
scroll_to_output=True
)
add_border_button.click(
fn=lambda image_source, mask_w, mask_h, color, opacity, input_img, overlay_img: add_border(input_img if image_source == "Input Image" else overlay_img, mask_w, mask_h, update_color_opacity(detect_color_format(color), opacity * 2.55)),
inputs=[border_image_source, mask_width, mask_height, margin_color, margin_opacity, input_image, overlay_image],
outputs=[bordered_image_output],
scroll_to_output=True
)
if __name__ == "__main__":
constants.load_env_vars(constants.dotenv_path)
logging.basicConfig(
format="[%(levelname)s] %(asctime)s %(message)s", level=logging.INFO
)
logging.info("Environment Variables: %s" % os.environ)
# if _get_output(["nvcc", "--version"]) is None:
# logging.info("Installing CUDA toolkit...")
# install_cuda_toolkit()
# else:
# logging.info("Detected CUDA: %s" % _get_output(["nvcc", "--version"]))
# logging.info("Installing CUDA extensions...")
# setup_runtime_env()
#main(os.getenv("DEBUG") == "1")
#main()
hexaGrid.queue(default_concurrency_limit=1,max_size=12,api_open=False)
hexaGrid.launch(allowed_paths=["assets","/","./assets","images","./images", "./images/prerendered"], favicon_path="./assets/favicon.ico", max_file_size="10mb")