Merge from Main repository
Browse files- LUT/BlackWhite.cube +0 -0
- LUT/CineCold.cube +0 -0
- LUT/CineDrama.cube +0 -0
- LUT/CineVibrant.cube +0 -0
- LUT/CineWarm.cube +0 -0
- LUT/Depth_of_Field.cube +0 -0
- LUT/Glow_Highlights.cube +0 -0
- LUT/RedWhiteBlue.cube +0 -0
- assets/logo.png → LUT/daisy.jpg +2 -2
- LUT/grayscale.cube +0 -0
- LUT/scenery01.cube +0 -0
- app.py +20 -19
- assets/logo_hex.png +0 -3
- assets/logo_old.png +0 -3
- assets/logo_hex.gif → images/prerendered/grid_1.png +2 -2
- src/block.py +333 -0
- src/condition.py +116 -0
- src/generate.py +294 -0
- src/lora_controller.py +75 -0
- src/transformer.py +270 -0
- utils/ai_generator.py +12 -4
- utils/ai_generator_diffusers_flux.py +90 -27
- utils/color_utils.py +214 -0
- utils/constants.py +28 -2
- utils/depth_estimation.py +121 -0
- utils/excluded_colors.py +56 -0
- utils/file_utils.py +10 -0
- utils/hex_grid.py +8 -8
- utils/lora_details.py +46 -1
- utils/version_info.py +81 -0
LUT/BlackWhite.cube
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LUT/CineCold.cube
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LUT/CineDrama.cube
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LUT/CineVibrant.cube
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LUT/CineWarm.cube
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LUT/Depth_of_Field.cube
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LUT/Glow_Highlights.cube
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
LUT/RedWhiteBlue.cube
ADDED
The diff for this file is too large to render.
See raw diff
|
|
assets/logo.png → LUT/daisy.jpg
RENAMED
File without changes
|
LUT/grayscale.cube
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
LUT/scenery01.cube
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
app.py
CHANGED
@@ -6,6 +6,7 @@ from tempfile import NamedTemporaryFile
|
|
6 |
from pathlib import Path
|
7 |
import atexit
|
8 |
import random
|
|
|
9 |
# Import constants
|
10 |
import utils.constants as constants
|
11 |
|
@@ -308,16 +309,16 @@ with gr.Blocks(css_paths="style_20250128.css", title="HexaGrid Creator", theme='
|
|
308 |
)
|
309 |
with gr.Column():
|
310 |
with gr.Accordion("Hex Coloring and Exclusion", open = False):
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
with gr.Accordion("Image Filters", open = False):
|
322 |
with gr.Row():
|
323 |
with gr.Column():
|
@@ -468,15 +469,15 @@ with gr.Blocks(css_paths="style_20250128.css", title="HexaGrid Creator", theme='
|
|
468 |
### The custom color list is a comma separated list of hex colors.
|
469 |
#### Example: "A,2,3,4,5,6,7,8,9,10,J,Q,K", "red,#0000FF,#00FF00,red,#FFFF00,#00FFFF,#FF8000,#FF00FF,#FF0080,#FF8000,#FF0080,lightblue"
|
470 |
""", elem_id="hex_text_info", visible=False)
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
with gr.Row():
|
481 |
hex_size = gr.Number(label="Hexagon Size", value=32, minimum=1, maximum=768)
|
482 |
border_size = gr.Slider(-5,25,value=0,step=1,label="Border Size")
|
|
|
6 |
from pathlib import Path
|
7 |
import atexit
|
8 |
import random
|
9 |
+
import spaces
|
10 |
# Import constants
|
11 |
import utils.constants as constants
|
12 |
|
|
|
309 |
)
|
310 |
with gr.Column():
|
311 |
with gr.Accordion("Hex Coloring and Exclusion", open = False):
|
312 |
+
with gr.Row():
|
313 |
+
with gr.Column():
|
314 |
+
color_picker = gr.ColorPicker(label="Pick a color to exclude",value="#505050")
|
315 |
+
with gr.Column():
|
316 |
+
filter_color = gr.Checkbox(label="Filter Excluded Colors from Sampling", value=False,)
|
317 |
+
exclude_color_button = gr.Button("Exclude Color", elem_id="exlude_color_button", elem_classes="solid")
|
318 |
+
color_display = gr.DataFrame(label="List of Excluded RGBA Colors", headers=["R", "G", "B", "A"], elem_id="excluded_colors", type="array", value=build_dataframe(excluded_color_list), interactive=True, elem_classes="solid centered")
|
319 |
+
selected_row = gr.Number(0, label="Selected Row", visible=False)
|
320 |
+
delete_button = gr.Button("Delete Row", elem_id="delete_exclusion_button", elem_classes="solid")
|
321 |
+
fill_hex = gr.Checkbox(label="Fill Hex with color from Image", value=True)
|
322 |
with gr.Accordion("Image Filters", open = False):
|
323 |
with gr.Row():
|
324 |
with gr.Column():
|
|
|
469 |
### The custom color list is a comma separated list of hex colors.
|
470 |
#### Example: "A,2,3,4,5,6,7,8,9,10,J,Q,K", "red,#0000FF,#00FF00,red,#FFFF00,#00FFFF,#FF8000,#FF00FF,#FF0080,#FF8000,#FF0080,lightblue"
|
471 |
""", elem_id="hex_text_info", visible=False)
|
472 |
+
add_hex_text.change(
|
473 |
+
fn=lambda x: (
|
474 |
+
gr.update(visible=(x == "Custom List")),
|
475 |
+
gr.update(visible=(x == "Custom List")),
|
476 |
+
gr.update(visible=(x != None))
|
477 |
+
),
|
478 |
+
inputs=add_hex_text,
|
479 |
+
outputs=[custom_text_list, custom_text_color_list, hex_text_info]
|
480 |
+
)
|
481 |
with gr.Row():
|
482 |
hex_size = gr.Number(label="Hexagon Size", value=32, minimum=1, maximum=768)
|
483 |
border_size = gr.Slider(-5,25,value=0,step=1,label="Border Size")
|
assets/logo_hex.png
DELETED
Git LFS Details
|
assets/logo_old.png
DELETED
Git LFS Details
|
assets/logo_hex.gif → images/prerendered/grid_1.png
RENAMED
File without changes
|
src/block.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import List, Union, Optional, Dict, Any, Callable
|
3 |
+
from diffusers.models.attention_processor import Attention, F
|
4 |
+
from .lora_controller import enable_lora
|
5 |
+
|
6 |
+
|
7 |
+
def attn_forward(
|
8 |
+
attn: Attention,
|
9 |
+
hidden_states: torch.FloatTensor,
|
10 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
11 |
+
condition_latents: torch.FloatTensor = None,
|
12 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
13 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
14 |
+
cond_rotary_emb: Optional[torch.Tensor] = None,
|
15 |
+
model_config: Optional[Dict[str, Any]] = {},
|
16 |
+
) -> torch.FloatTensor:
|
17 |
+
batch_size, _, _ = (
|
18 |
+
hidden_states.shape
|
19 |
+
if encoder_hidden_states is None
|
20 |
+
else encoder_hidden_states.shape
|
21 |
+
)
|
22 |
+
|
23 |
+
with enable_lora(
|
24 |
+
(attn.to_q, attn.to_k, attn.to_v), model_config.get("latent_lora", False)
|
25 |
+
):
|
26 |
+
# `sample` projections.
|
27 |
+
query = attn.to_q(hidden_states)
|
28 |
+
key = attn.to_k(hidden_states)
|
29 |
+
value = attn.to_v(hidden_states)
|
30 |
+
|
31 |
+
inner_dim = key.shape[-1]
|
32 |
+
head_dim = inner_dim // attn.heads
|
33 |
+
|
34 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
35 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
36 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
37 |
+
|
38 |
+
if attn.norm_q is not None:
|
39 |
+
query = attn.norm_q(query)
|
40 |
+
if attn.norm_k is not None:
|
41 |
+
key = attn.norm_k(key)
|
42 |
+
|
43 |
+
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
44 |
+
if encoder_hidden_states is not None:
|
45 |
+
# `context` projections.
|
46 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
47 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
48 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
49 |
+
|
50 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
51 |
+
batch_size, -1, attn.heads, head_dim
|
52 |
+
).transpose(1, 2)
|
53 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
54 |
+
batch_size, -1, attn.heads, head_dim
|
55 |
+
).transpose(1, 2)
|
56 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
57 |
+
batch_size, -1, attn.heads, head_dim
|
58 |
+
).transpose(1, 2)
|
59 |
+
|
60 |
+
if attn.norm_added_q is not None:
|
61 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(
|
62 |
+
encoder_hidden_states_query_proj
|
63 |
+
)
|
64 |
+
if attn.norm_added_k is not None:
|
65 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(
|
66 |
+
encoder_hidden_states_key_proj
|
67 |
+
)
|
68 |
+
|
69 |
+
# attention
|
70 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
71 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
72 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
73 |
+
|
74 |
+
if image_rotary_emb is not None:
|
75 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
76 |
+
|
77 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
78 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
79 |
+
|
80 |
+
if condition_latents is not None:
|
81 |
+
cond_query = attn.to_q(condition_latents)
|
82 |
+
cond_key = attn.to_k(condition_latents)
|
83 |
+
cond_value = attn.to_v(condition_latents)
|
84 |
+
|
85 |
+
cond_query = cond_query.view(batch_size, -1, attn.heads, head_dim).transpose(
|
86 |
+
1, 2
|
87 |
+
)
|
88 |
+
cond_key = cond_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
89 |
+
cond_value = cond_value.view(batch_size, -1, attn.heads, head_dim).transpose(
|
90 |
+
1, 2
|
91 |
+
)
|
92 |
+
if attn.norm_q is not None:
|
93 |
+
cond_query = attn.norm_q(cond_query)
|
94 |
+
if attn.norm_k is not None:
|
95 |
+
cond_key = attn.norm_k(cond_key)
|
96 |
+
|
97 |
+
if cond_rotary_emb is not None:
|
98 |
+
cond_query = apply_rotary_emb(cond_query, cond_rotary_emb)
|
99 |
+
cond_key = apply_rotary_emb(cond_key, cond_rotary_emb)
|
100 |
+
|
101 |
+
if condition_latents is not None:
|
102 |
+
query = torch.cat([query, cond_query], dim=2)
|
103 |
+
key = torch.cat([key, cond_key], dim=2)
|
104 |
+
value = torch.cat([value, cond_value], dim=2)
|
105 |
+
|
106 |
+
if not model_config.get("union_cond_attn", True):
|
107 |
+
# If we don't want to use the union condition attention, we need to mask the attention
|
108 |
+
# between the hidden states and the condition latents
|
109 |
+
attention_mask = torch.ones(
|
110 |
+
query.shape[2], key.shape[2], device=query.device, dtype=torch.bool
|
111 |
+
)
|
112 |
+
condition_n = cond_query.shape[2]
|
113 |
+
attention_mask[-condition_n:, :-condition_n] = False
|
114 |
+
attention_mask[:-condition_n, -condition_n:] = False
|
115 |
+
if hasattr(attn, "c_factor"):
|
116 |
+
attention_mask = torch.zeros(
|
117 |
+
query.shape[2], key.shape[2], device=query.device, dtype=query.dtype
|
118 |
+
)
|
119 |
+
condition_n = cond_query.shape[2]
|
120 |
+
bias = torch.log(attn.c_factor[0])
|
121 |
+
attention_mask[-condition_n:, :-condition_n] = bias
|
122 |
+
attention_mask[:-condition_n, -condition_n:] = bias
|
123 |
+
hidden_states = F.scaled_dot_product_attention(
|
124 |
+
query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask
|
125 |
+
)
|
126 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
127 |
+
batch_size, -1, attn.heads * head_dim
|
128 |
+
)
|
129 |
+
hidden_states = hidden_states.to(query.dtype)
|
130 |
+
|
131 |
+
if encoder_hidden_states is not None:
|
132 |
+
if condition_latents is not None:
|
133 |
+
encoder_hidden_states, hidden_states, condition_latents = (
|
134 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
135 |
+
hidden_states[
|
136 |
+
:, encoder_hidden_states.shape[1] : -condition_latents.shape[1]
|
137 |
+
],
|
138 |
+
hidden_states[:, -condition_latents.shape[1] :],
|
139 |
+
)
|
140 |
+
else:
|
141 |
+
encoder_hidden_states, hidden_states = (
|
142 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
143 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
144 |
+
)
|
145 |
+
|
146 |
+
with enable_lora((attn.to_out[0],), model_config.get("latent_lora", False)):
|
147 |
+
# linear proj
|
148 |
+
hidden_states = attn.to_out[0](hidden_states)
|
149 |
+
# dropout
|
150 |
+
hidden_states = attn.to_out[1](hidden_states)
|
151 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
152 |
+
|
153 |
+
if condition_latents is not None:
|
154 |
+
condition_latents = attn.to_out[0](condition_latents)
|
155 |
+
condition_latents = attn.to_out[1](condition_latents)
|
156 |
+
|
157 |
+
return (
|
158 |
+
(hidden_states, encoder_hidden_states, condition_latents)
|
159 |
+
if condition_latents is not None
|
160 |
+
else (hidden_states, encoder_hidden_states)
|
161 |
+
)
|
162 |
+
elif condition_latents is not None:
|
163 |
+
# if there are condition_latents, we need to separate the hidden_states and the condition_latents
|
164 |
+
hidden_states, condition_latents = (
|
165 |
+
hidden_states[:, : -condition_latents.shape[1]],
|
166 |
+
hidden_states[:, -condition_latents.shape[1] :],
|
167 |
+
)
|
168 |
+
return hidden_states, condition_latents
|
169 |
+
else:
|
170 |
+
return hidden_states
|
171 |
+
|
172 |
+
|
173 |
+
def block_forward(
|
174 |
+
self,
|
175 |
+
hidden_states: torch.FloatTensor,
|
176 |
+
encoder_hidden_states: torch.FloatTensor,
|
177 |
+
condition_latents: torch.FloatTensor,
|
178 |
+
temb: torch.FloatTensor,
|
179 |
+
cond_temb: torch.FloatTensor,
|
180 |
+
cond_rotary_emb=None,
|
181 |
+
image_rotary_emb=None,
|
182 |
+
model_config: Optional[Dict[str, Any]] = {},
|
183 |
+
):
|
184 |
+
use_cond = condition_latents is not None
|
185 |
+
with enable_lora((self.norm1.linear,), model_config.get("latent_lora", False)):
|
186 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
187 |
+
hidden_states, emb=temb
|
188 |
+
)
|
189 |
+
|
190 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
|
191 |
+
self.norm1_context(encoder_hidden_states, emb=temb)
|
192 |
+
)
|
193 |
+
|
194 |
+
if use_cond:
|
195 |
+
(
|
196 |
+
norm_condition_latents,
|
197 |
+
cond_gate_msa,
|
198 |
+
cond_shift_mlp,
|
199 |
+
cond_scale_mlp,
|
200 |
+
cond_gate_mlp,
|
201 |
+
) = self.norm1(condition_latents, emb=cond_temb)
|
202 |
+
|
203 |
+
# Attention.
|
204 |
+
result = attn_forward(
|
205 |
+
self.attn,
|
206 |
+
model_config=model_config,
|
207 |
+
hidden_states=norm_hidden_states,
|
208 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
209 |
+
condition_latents=norm_condition_latents if use_cond else None,
|
210 |
+
image_rotary_emb=image_rotary_emb,
|
211 |
+
cond_rotary_emb=cond_rotary_emb if use_cond else None,
|
212 |
+
)
|
213 |
+
attn_output, context_attn_output = result[:2]
|
214 |
+
cond_attn_output = result[2] if use_cond else None
|
215 |
+
|
216 |
+
# Process attention outputs for the `hidden_states`.
|
217 |
+
# 1. hidden_states
|
218 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
219 |
+
hidden_states = hidden_states + attn_output
|
220 |
+
# 2. encoder_hidden_states
|
221 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
222 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
223 |
+
# 3. condition_latents
|
224 |
+
if use_cond:
|
225 |
+
cond_attn_output = cond_gate_msa.unsqueeze(1) * cond_attn_output
|
226 |
+
condition_latents = condition_latents + cond_attn_output
|
227 |
+
if model_config.get("add_cond_attn", False):
|
228 |
+
hidden_states += cond_attn_output
|
229 |
+
|
230 |
+
# LayerNorm + MLP.
|
231 |
+
# 1. hidden_states
|
232 |
+
norm_hidden_states = self.norm2(hidden_states)
|
233 |
+
norm_hidden_states = (
|
234 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
235 |
+
)
|
236 |
+
# 2. encoder_hidden_states
|
237 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
238 |
+
norm_encoder_hidden_states = (
|
239 |
+
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
240 |
+
)
|
241 |
+
# 3. condition_latents
|
242 |
+
if use_cond:
|
243 |
+
norm_condition_latents = self.norm2(condition_latents)
|
244 |
+
norm_condition_latents = (
|
245 |
+
norm_condition_latents * (1 + cond_scale_mlp[:, None])
|
246 |
+
+ cond_shift_mlp[:, None]
|
247 |
+
)
|
248 |
+
|
249 |
+
# Feed-forward.
|
250 |
+
with enable_lora((self.ff.net[2],), model_config.get("latent_lora", False)):
|
251 |
+
# 1. hidden_states
|
252 |
+
ff_output = self.ff(norm_hidden_states)
|
253 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
254 |
+
# 2. encoder_hidden_states
|
255 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
256 |
+
context_ff_output = c_gate_mlp.unsqueeze(1) * context_ff_output
|
257 |
+
# 3. condition_latents
|
258 |
+
if use_cond:
|
259 |
+
cond_ff_output = self.ff(norm_condition_latents)
|
260 |
+
cond_ff_output = cond_gate_mlp.unsqueeze(1) * cond_ff_output
|
261 |
+
|
262 |
+
# Process feed-forward outputs.
|
263 |
+
hidden_states = hidden_states + ff_output
|
264 |
+
encoder_hidden_states = encoder_hidden_states + context_ff_output
|
265 |
+
if use_cond:
|
266 |
+
condition_latents = condition_latents + cond_ff_output
|
267 |
+
|
268 |
+
# Clip to avoid overflow.
|
269 |
+
if encoder_hidden_states.dtype == torch.float16:
|
270 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
271 |
+
|
272 |
+
return encoder_hidden_states, hidden_states, condition_latents if use_cond else None
|
273 |
+
|
274 |
+
|
275 |
+
def single_block_forward(
|
276 |
+
self,
|
277 |
+
hidden_states: torch.FloatTensor,
|
278 |
+
temb: torch.FloatTensor,
|
279 |
+
image_rotary_emb=None,
|
280 |
+
condition_latents: torch.FloatTensor = None,
|
281 |
+
cond_temb: torch.FloatTensor = None,
|
282 |
+
cond_rotary_emb=None,
|
283 |
+
model_config: Optional[Dict[str, Any]] = {},
|
284 |
+
):
|
285 |
+
|
286 |
+
using_cond = condition_latents is not None
|
287 |
+
residual = hidden_states
|
288 |
+
with enable_lora(
|
289 |
+
(
|
290 |
+
self.norm.linear,
|
291 |
+
self.proj_mlp,
|
292 |
+
),
|
293 |
+
model_config.get("latent_lora", False),
|
294 |
+
):
|
295 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
296 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
297 |
+
if using_cond:
|
298 |
+
residual_cond = condition_latents
|
299 |
+
norm_condition_latents, cond_gate = self.norm(condition_latents, emb=cond_temb)
|
300 |
+
mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_condition_latents))
|
301 |
+
|
302 |
+
attn_output = attn_forward(
|
303 |
+
self.attn,
|
304 |
+
model_config=model_config,
|
305 |
+
hidden_states=norm_hidden_states,
|
306 |
+
image_rotary_emb=image_rotary_emb,
|
307 |
+
**(
|
308 |
+
{
|
309 |
+
"condition_latents": norm_condition_latents,
|
310 |
+
"cond_rotary_emb": cond_rotary_emb if using_cond else None,
|
311 |
+
}
|
312 |
+
if using_cond
|
313 |
+
else {}
|
314 |
+
),
|
315 |
+
)
|
316 |
+
if using_cond:
|
317 |
+
attn_output, cond_attn_output = attn_output
|
318 |
+
|
319 |
+
with enable_lora((self.proj_out,), model_config.get("latent_lora", False)):
|
320 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
321 |
+
gate = gate.unsqueeze(1)
|
322 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
323 |
+
hidden_states = residual + hidden_states
|
324 |
+
if using_cond:
|
325 |
+
condition_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2)
|
326 |
+
cond_gate = cond_gate.unsqueeze(1)
|
327 |
+
condition_latents = cond_gate * self.proj_out(condition_latents)
|
328 |
+
condition_latents = residual_cond + condition_latents
|
329 |
+
|
330 |
+
if hidden_states.dtype == torch.float16:
|
331 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
332 |
+
|
333 |
+
return hidden_states if not using_cond else (hidden_states, condition_latents)
|
src/condition.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Optional, Union, List, Tuple
|
3 |
+
from diffusers.pipelines import FluxPipeline
|
4 |
+
from PIL import Image, ImageFilter
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
condition_dict = {
|
9 |
+
"depth": 0,
|
10 |
+
"canny": 1,
|
11 |
+
"subject": 4,
|
12 |
+
"coloring": 6,
|
13 |
+
"deblurring": 7,
|
14 |
+
"fill": 9,
|
15 |
+
}
|
16 |
+
class Condition(object):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
condition_type: str,
|
20 |
+
raw_img: Union[Image.Image, torch.Tensor] = None,
|
21 |
+
condition: Union[Image.Image, torch.Tensor] = None,
|
22 |
+
mask=None,
|
23 |
+
) -> None:
|
24 |
+
self.condition_type = condition_type
|
25 |
+
assert raw_img is not None or condition is not None
|
26 |
+
if raw_img is not None:
|
27 |
+
self.condition = self.get_condition(condition_type, raw_img)
|
28 |
+
else:
|
29 |
+
self.condition = condition
|
30 |
+
# TODO: Add mask support
|
31 |
+
assert mask is None, "Mask not supported yet"
|
32 |
+
def get_condition(
|
33 |
+
self, condition_type: str, raw_img: Union[Image.Image, torch.Tensor]
|
34 |
+
) -> Union[Image.Image, torch.Tensor]:
|
35 |
+
"""
|
36 |
+
Returns the condition image.
|
37 |
+
"""
|
38 |
+
if condition_type == "depth":
|
39 |
+
from transformers import pipeline
|
40 |
+
depth_pipe = pipeline(
|
41 |
+
task="depth-estimation",
|
42 |
+
model="LiheYoung/depth-anything-small-hf",
|
43 |
+
device="cuda",
|
44 |
+
)
|
45 |
+
source_image = raw_img.convert("RGB")
|
46 |
+
condition_img = depth_pipe(source_image)["depth"].convert("RGB")
|
47 |
+
return condition_img
|
48 |
+
elif condition_type == "canny":
|
49 |
+
img = np.array(raw_img)
|
50 |
+
edges = cv2.Canny(img, 100, 200)
|
51 |
+
edges = Image.fromarray(edges).convert("RGB")
|
52 |
+
return edges
|
53 |
+
elif condition_type == "subject":
|
54 |
+
return raw_img
|
55 |
+
elif condition_type == "coloring":
|
56 |
+
return raw_img.convert("L").convert("RGB")
|
57 |
+
elif condition_type == "deblurring":
|
58 |
+
condition_image = (
|
59 |
+
raw_img.convert("RGB")
|
60 |
+
.filter(ImageFilter.GaussianBlur(10))
|
61 |
+
.convert("RGB")
|
62 |
+
)
|
63 |
+
return condition_image
|
64 |
+
elif condition_type == "fill":
|
65 |
+
return raw_img.convert("RGB")
|
66 |
+
return self.condition
|
67 |
+
@property
|
68 |
+
def type_id(self) -> int:
|
69 |
+
"""
|
70 |
+
Returns the type id of the condition.
|
71 |
+
"""
|
72 |
+
return condition_dict[self.condition_type]
|
73 |
+
@classmethod
|
74 |
+
def get_type_id(cls, condition_type: str) -> int:
|
75 |
+
"""
|
76 |
+
Returns the type id of the condition.
|
77 |
+
"""
|
78 |
+
return condition_dict[condition_type]
|
79 |
+
def _encode_image(self, pipe: FluxPipeline, cond_img: Image.Image) -> torch.Tensor:
|
80 |
+
"""
|
81 |
+
Encodes an image condition into tokens using the pipeline.
|
82 |
+
"""
|
83 |
+
cond_img = pipe.image_processor.preprocess(cond_img)
|
84 |
+
cond_img = cond_img.to(pipe.device).to(pipe.dtype)
|
85 |
+
cond_img = pipe.vae.encode(cond_img).latent_dist.sample()
|
86 |
+
cond_img = (
|
87 |
+
cond_img - pipe.vae.config.shift_factor
|
88 |
+
) * pipe.vae.config.scaling_factor
|
89 |
+
cond_tokens = pipe._pack_latents(cond_img, *cond_img.shape)
|
90 |
+
cond_ids = pipe._prepare_latent_image_ids(
|
91 |
+
cond_img.shape[0],
|
92 |
+
cond_img.shape[2]//2,
|
93 |
+
cond_img.shape[3]//2,
|
94 |
+
pipe.device,
|
95 |
+
pipe.dtype,
|
96 |
+
)
|
97 |
+
return cond_tokens, cond_ids
|
98 |
+
def encode(self, pipe: FluxPipeline) -> Tuple[torch.Tensor, torch.Tensor, int]:
|
99 |
+
"""
|
100 |
+
Encodes the condition into tokens, ids and type_id.
|
101 |
+
"""
|
102 |
+
if self.condition_type in [
|
103 |
+
"depth",
|
104 |
+
"canny",
|
105 |
+
"subject",
|
106 |
+
"coloring",
|
107 |
+
"deblurring",
|
108 |
+
"fill",
|
109 |
+
]:
|
110 |
+
tokens, ids = self._encode_image(pipe, self.condition)
|
111 |
+
else:
|
112 |
+
raise NotImplementedError(
|
113 |
+
f"Condition type {self.condition_type} not implemented"
|
114 |
+
)
|
115 |
+
type_id = torch.ones_like(ids[:, :1]) * self.type_id
|
116 |
+
return tokens, ids, type_id
|
src/generate.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import yaml, os
|
3 |
+
from diffusers.pipelines import FluxPipeline
|
4 |
+
from typing import List, Union, Optional, Dict, Any, Callable
|
5 |
+
from .transformer import tranformer_forward
|
6 |
+
from .condition import Condition
|
7 |
+
|
8 |
+
from diffusers.pipelines.flux.pipeline_flux import (
|
9 |
+
FluxPipelineOutput,
|
10 |
+
calculate_shift,
|
11 |
+
retrieve_timesteps,
|
12 |
+
np,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
def prepare_params(
|
17 |
+
prompt: Union[str, List[str]] = None,
|
18 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
19 |
+
height: Optional[int] = 512,
|
20 |
+
width: Optional[int] = 512,
|
21 |
+
num_inference_steps: int = 28,
|
22 |
+
timesteps: List[int] = None,
|
23 |
+
guidance_scale: float = 3.5,
|
24 |
+
num_images_per_prompt: Optional[int] = 1,
|
25 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
26 |
+
latents: Optional[torch.FloatTensor] = None,
|
27 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
28 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
29 |
+
output_type: Optional[str] = "pil",
|
30 |
+
return_dict: bool = True,
|
31 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
32 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
33 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
34 |
+
max_sequence_length: int = 512,
|
35 |
+
**kwargs: dict,
|
36 |
+
):
|
37 |
+
return (
|
38 |
+
prompt,
|
39 |
+
prompt_2,
|
40 |
+
height,
|
41 |
+
width,
|
42 |
+
num_inference_steps,
|
43 |
+
timesteps,
|
44 |
+
guidance_scale,
|
45 |
+
num_images_per_prompt,
|
46 |
+
generator,
|
47 |
+
latents,
|
48 |
+
prompt_embeds,
|
49 |
+
pooled_prompt_embeds,
|
50 |
+
output_type,
|
51 |
+
return_dict,
|
52 |
+
joint_attention_kwargs,
|
53 |
+
callback_on_step_end,
|
54 |
+
callback_on_step_end_tensor_inputs,
|
55 |
+
max_sequence_length,
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
def seed_everything(seed: int = 42):
|
60 |
+
torch.backends.cudnn.deterministic = True
|
61 |
+
torch.manual_seed(seed)
|
62 |
+
np.random.seed(seed)
|
63 |
+
|
64 |
+
|
65 |
+
@torch.no_grad()
|
66 |
+
def generate(
|
67 |
+
pipeline: FluxPipeline,
|
68 |
+
conditions: List[Condition] = None,
|
69 |
+
model_config: Optional[Dict[str, Any]] = {},
|
70 |
+
condition_scale: float = 1.0,
|
71 |
+
**params: dict,
|
72 |
+
):
|
73 |
+
# model_config = model_config or get_config(config_path).get("model", {})
|
74 |
+
if condition_scale != 1:
|
75 |
+
for name, module in pipeline.transformer.named_modules():
|
76 |
+
if not name.endswith(".attn"):
|
77 |
+
continue
|
78 |
+
module.c_factor = torch.ones(1, 1) * condition_scale
|
79 |
+
|
80 |
+
self = pipeline
|
81 |
+
(
|
82 |
+
prompt,
|
83 |
+
prompt_2,
|
84 |
+
height,
|
85 |
+
width,
|
86 |
+
num_inference_steps,
|
87 |
+
timesteps,
|
88 |
+
guidance_scale,
|
89 |
+
num_images_per_prompt,
|
90 |
+
generator,
|
91 |
+
latents,
|
92 |
+
prompt_embeds,
|
93 |
+
pooled_prompt_embeds,
|
94 |
+
output_type,
|
95 |
+
return_dict,
|
96 |
+
joint_attention_kwargs,
|
97 |
+
callback_on_step_end,
|
98 |
+
callback_on_step_end_tensor_inputs,
|
99 |
+
max_sequence_length,
|
100 |
+
) = prepare_params(**params)
|
101 |
+
|
102 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
103 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
104 |
+
|
105 |
+
# 1. Check inputs. Raise error if not correct
|
106 |
+
self.check_inputs(
|
107 |
+
prompt,
|
108 |
+
prompt_2,
|
109 |
+
height,
|
110 |
+
width,
|
111 |
+
prompt_embeds=prompt_embeds,
|
112 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
113 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
114 |
+
max_sequence_length=max_sequence_length,
|
115 |
+
)
|
116 |
+
|
117 |
+
self._guidance_scale = guidance_scale
|
118 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
119 |
+
self._interrupt = False
|
120 |
+
|
121 |
+
# 2. Define call parameters
|
122 |
+
if prompt is not None and isinstance(prompt, str):
|
123 |
+
batch_size = 1
|
124 |
+
elif prompt is not None and isinstance(prompt, list):
|
125 |
+
batch_size = len(prompt)
|
126 |
+
else:
|
127 |
+
batch_size = prompt_embeds.shape[0]
|
128 |
+
|
129 |
+
device = self._execution_device
|
130 |
+
|
131 |
+
lora_scale = (
|
132 |
+
self.joint_attention_kwargs.get("scale", None)
|
133 |
+
if self.joint_attention_kwargs is not None
|
134 |
+
else None
|
135 |
+
)
|
136 |
+
(
|
137 |
+
prompt_embeds,
|
138 |
+
pooled_prompt_embeds,
|
139 |
+
text_ids,
|
140 |
+
) = self.encode_prompt(
|
141 |
+
prompt=prompt,
|
142 |
+
prompt_2=prompt_2,
|
143 |
+
prompt_embeds=prompt_embeds,
|
144 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
145 |
+
device=device,
|
146 |
+
num_images_per_prompt=num_images_per_prompt,
|
147 |
+
max_sequence_length=max_sequence_length,
|
148 |
+
lora_scale=lora_scale,
|
149 |
+
)
|
150 |
+
|
151 |
+
# 4. Prepare latent variables
|
152 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
153 |
+
latents, latent_image_ids = self.prepare_latents(
|
154 |
+
batch_size * num_images_per_prompt,
|
155 |
+
num_channels_latents,
|
156 |
+
height,
|
157 |
+
width,
|
158 |
+
prompt_embeds.dtype,
|
159 |
+
device,
|
160 |
+
generator,
|
161 |
+
latents,
|
162 |
+
)
|
163 |
+
|
164 |
+
# 4.1. Prepare conditions
|
165 |
+
condition_latents, condition_ids, condition_type_ids = ([] for _ in range(3))
|
166 |
+
use_condition = conditions is not None or []
|
167 |
+
if use_condition:
|
168 |
+
assert len(conditions) <= 1, "Only one condition is supported for now."
|
169 |
+
pipeline.set_adapters(
|
170 |
+
{
|
171 |
+
512: "subject_512",
|
172 |
+
1024: "subject_1024",
|
173 |
+
}[height]
|
174 |
+
)
|
175 |
+
for condition in conditions:
|
176 |
+
tokens, ids, type_id = condition.encode(self)
|
177 |
+
condition_latents.append(tokens) # [batch_size, token_n, token_dim]
|
178 |
+
condition_ids.append(ids) # [token_n, id_dim(3)]
|
179 |
+
condition_type_ids.append(type_id) # [token_n, 1]
|
180 |
+
condition_latents = torch.cat(condition_latents, dim=1)
|
181 |
+
condition_ids = torch.cat(condition_ids, dim=0)
|
182 |
+
if condition.condition_type == "subject":
|
183 |
+
delta = 32 if height == 512 else -32
|
184 |
+
# print(f"Condition delta: {delta}")
|
185 |
+
condition_ids[:, 2] += delta
|
186 |
+
|
187 |
+
condition_type_ids = torch.cat(condition_type_ids, dim=0)
|
188 |
+
|
189 |
+
# 5. Prepare timesteps
|
190 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
191 |
+
image_seq_len = latents.shape[1]
|
192 |
+
mu = calculate_shift(
|
193 |
+
image_seq_len,
|
194 |
+
self.scheduler.config.base_image_seq_len,
|
195 |
+
self.scheduler.config.max_image_seq_len,
|
196 |
+
self.scheduler.config.base_shift,
|
197 |
+
self.scheduler.config.max_shift,
|
198 |
+
)
|
199 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
200 |
+
self.scheduler,
|
201 |
+
num_inference_steps,
|
202 |
+
device,
|
203 |
+
timesteps,
|
204 |
+
sigmas,
|
205 |
+
mu=mu,
|
206 |
+
)
|
207 |
+
num_warmup_steps = max(
|
208 |
+
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
209 |
+
)
|
210 |
+
self._num_timesteps = len(timesteps)
|
211 |
+
|
212 |
+
# 6. Denoising loop
|
213 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
214 |
+
for i, t in enumerate(timesteps):
|
215 |
+
if self.interrupt:
|
216 |
+
continue
|
217 |
+
|
218 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
219 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
220 |
+
|
221 |
+
# handle guidance
|
222 |
+
if self.transformer.config.guidance_embeds:
|
223 |
+
guidance = torch.tensor([guidance_scale], device=device)
|
224 |
+
guidance = guidance.expand(latents.shape[0])
|
225 |
+
else:
|
226 |
+
guidance = None
|
227 |
+
noise_pred = tranformer_forward(
|
228 |
+
self.transformer,
|
229 |
+
model_config=model_config,
|
230 |
+
# Inputs of the condition (new feature)
|
231 |
+
condition_latents=condition_latents if use_condition else None,
|
232 |
+
condition_ids=condition_ids if use_condition else None,
|
233 |
+
condition_type_ids=condition_type_ids if use_condition else None,
|
234 |
+
# Inputs to the original transformer
|
235 |
+
hidden_states=latents,
|
236 |
+
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
|
237 |
+
timestep=timestep / 1000,
|
238 |
+
guidance=guidance,
|
239 |
+
pooled_projections=pooled_prompt_embeds,
|
240 |
+
encoder_hidden_states=prompt_embeds,
|
241 |
+
txt_ids=text_ids,
|
242 |
+
img_ids=latent_image_ids,
|
243 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
244 |
+
return_dict=False,
|
245 |
+
)[0]
|
246 |
+
|
247 |
+
# compute the previous noisy sample x_t -> x_t-1
|
248 |
+
latents_dtype = latents.dtype
|
249 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
250 |
+
|
251 |
+
if latents.dtype != latents_dtype:
|
252 |
+
if torch.backends.mps.is_available():
|
253 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
254 |
+
latents = latents.to(latents_dtype)
|
255 |
+
|
256 |
+
if callback_on_step_end is not None:
|
257 |
+
callback_kwargs = {}
|
258 |
+
for k in callback_on_step_end_tensor_inputs:
|
259 |
+
callback_kwargs[k] = locals()[k]
|
260 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
261 |
+
|
262 |
+
latents = callback_outputs.pop("latents", latents)
|
263 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
264 |
+
|
265 |
+
# call the callback, if provided
|
266 |
+
if i == len(timesteps) - 1 or (
|
267 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
268 |
+
):
|
269 |
+
progress_bar.update()
|
270 |
+
|
271 |
+
if output_type == "latent":
|
272 |
+
image = latents
|
273 |
+
|
274 |
+
else:
|
275 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
276 |
+
latents = (
|
277 |
+
latents / self.vae.config.scaling_factor
|
278 |
+
) + self.vae.config.shift_factor
|
279 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
280 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
281 |
+
|
282 |
+
# Offload all models
|
283 |
+
self.maybe_free_model_hooks()
|
284 |
+
|
285 |
+
if condition_scale != 1:
|
286 |
+
for name, module in pipeline.transformer.named_modules():
|
287 |
+
if not name.endswith(".attn"):
|
288 |
+
continue
|
289 |
+
del module.c_factor
|
290 |
+
|
291 |
+
if not return_dict:
|
292 |
+
return (image,)
|
293 |
+
|
294 |
+
return FluxPipelineOutput(images=image)
|
src/lora_controller.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
2 |
+
from typing import List, Any, Optional, Type
|
3 |
+
|
4 |
+
|
5 |
+
class enable_lora:
|
6 |
+
def __init__(self, lora_modules: List[BaseTunerLayer], activated: bool) -> None:
|
7 |
+
self.activated: bool = activated
|
8 |
+
if activated:
|
9 |
+
return
|
10 |
+
self.lora_modules: List[BaseTunerLayer] = [
|
11 |
+
each for each in lora_modules if isinstance(each, BaseTunerLayer)
|
12 |
+
]
|
13 |
+
self.scales = [
|
14 |
+
{
|
15 |
+
active_adapter: lora_module.scaling[active_adapter]
|
16 |
+
for active_adapter in lora_module.active_adapters
|
17 |
+
}
|
18 |
+
for lora_module in self.lora_modules
|
19 |
+
]
|
20 |
+
|
21 |
+
def __enter__(self) -> None:
|
22 |
+
if self.activated:
|
23 |
+
return
|
24 |
+
|
25 |
+
for lora_module in self.lora_modules:
|
26 |
+
if not isinstance(lora_module, BaseTunerLayer):
|
27 |
+
continue
|
28 |
+
lora_module.scale_layer(0)
|
29 |
+
|
30 |
+
def __exit__(
|
31 |
+
self,
|
32 |
+
exc_type: Optional[Type[BaseException]],
|
33 |
+
exc_val: Optional[BaseException],
|
34 |
+
exc_tb: Optional[Any],
|
35 |
+
) -> None:
|
36 |
+
if self.activated:
|
37 |
+
return
|
38 |
+
for i, lora_module in enumerate(self.lora_modules):
|
39 |
+
if not isinstance(lora_module, BaseTunerLayer):
|
40 |
+
continue
|
41 |
+
for active_adapter in lora_module.active_adapters:
|
42 |
+
lora_module.scaling[active_adapter] = self.scales[i][active_adapter]
|
43 |
+
|
44 |
+
|
45 |
+
class set_lora_scale:
|
46 |
+
def __init__(self, lora_modules: List[BaseTunerLayer], scale: float) -> None:
|
47 |
+
self.lora_modules: List[BaseTunerLayer] = [
|
48 |
+
each for each in lora_modules if isinstance(each, BaseTunerLayer)
|
49 |
+
]
|
50 |
+
self.scales = [
|
51 |
+
{
|
52 |
+
active_adapter: lora_module.scaling[active_adapter]
|
53 |
+
for active_adapter in lora_module.active_adapters
|
54 |
+
}
|
55 |
+
for lora_module in self.lora_modules
|
56 |
+
]
|
57 |
+
self.scale = scale
|
58 |
+
|
59 |
+
def __enter__(self) -> None:
|
60 |
+
for lora_module in self.lora_modules:
|
61 |
+
if not isinstance(lora_module, BaseTunerLayer):
|
62 |
+
continue
|
63 |
+
lora_module.scale_layer(self.scale)
|
64 |
+
|
65 |
+
def __exit__(
|
66 |
+
self,
|
67 |
+
exc_type: Optional[Type[BaseException]],
|
68 |
+
exc_val: Optional[BaseException],
|
69 |
+
exc_tb: Optional[Any],
|
70 |
+
) -> None:
|
71 |
+
for i, lora_module in enumerate(self.lora_modules):
|
72 |
+
if not isinstance(lora_module, BaseTunerLayer):
|
73 |
+
continue
|
74 |
+
for active_adapter in lora_module.active_adapters:
|
75 |
+
lora_module.scaling[active_adapter] = self.scales[i][active_adapter]
|
src/transformer.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers.pipelines import FluxPipeline
|
3 |
+
from typing import List, Union, Optional, Dict, Any, Callable
|
4 |
+
from .block import block_forward, single_block_forward
|
5 |
+
from .lora_controller import enable_lora
|
6 |
+
from diffusers.models.transformers.transformer_flux import (
|
7 |
+
FluxTransformer2DModel,
|
8 |
+
Transformer2DModelOutput,
|
9 |
+
USE_PEFT_BACKEND,
|
10 |
+
is_torch_version,
|
11 |
+
scale_lora_layers,
|
12 |
+
unscale_lora_layers,
|
13 |
+
logger,
|
14 |
+
)
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
|
18 |
+
def prepare_params(
|
19 |
+
hidden_states: torch.Tensor,
|
20 |
+
encoder_hidden_states: torch.Tensor = None,
|
21 |
+
pooled_projections: torch.Tensor = None,
|
22 |
+
timestep: torch.LongTensor = None,
|
23 |
+
img_ids: torch.Tensor = None,
|
24 |
+
txt_ids: torch.Tensor = None,
|
25 |
+
guidance: torch.Tensor = None,
|
26 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
27 |
+
controlnet_block_samples=None,
|
28 |
+
controlnet_single_block_samples=None,
|
29 |
+
return_dict: bool = True,
|
30 |
+
**kwargs: dict,
|
31 |
+
):
|
32 |
+
return (
|
33 |
+
hidden_states,
|
34 |
+
encoder_hidden_states,
|
35 |
+
pooled_projections,
|
36 |
+
timestep,
|
37 |
+
img_ids,
|
38 |
+
txt_ids,
|
39 |
+
guidance,
|
40 |
+
joint_attention_kwargs,
|
41 |
+
controlnet_block_samples,
|
42 |
+
controlnet_single_block_samples,
|
43 |
+
return_dict,
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
def tranformer_forward(
|
48 |
+
transformer: FluxTransformer2DModel,
|
49 |
+
condition_latents: torch.Tensor,
|
50 |
+
condition_ids: torch.Tensor,
|
51 |
+
condition_type_ids: torch.Tensor,
|
52 |
+
model_config: Optional[Dict[str, Any]] = {},
|
53 |
+
return_conditional_latents: bool = False,
|
54 |
+
c_t=0,
|
55 |
+
**params: dict,
|
56 |
+
):
|
57 |
+
self = transformer
|
58 |
+
use_condition = condition_latents is not None
|
59 |
+
use_condition_in_single_blocks = model_config.get(
|
60 |
+
"use_condition_in_single_blocks", True
|
61 |
+
)
|
62 |
+
# if return_conditional_latents is True, use_condition and use_condition_in_single_blocks must be True
|
63 |
+
assert not return_conditional_latents or (
|
64 |
+
use_condition and use_condition_in_single_blocks
|
65 |
+
), "`return_conditional_latents` is True, `use_condition` and `use_condition_in_single_blocks` must be True"
|
66 |
+
|
67 |
+
(
|
68 |
+
hidden_states,
|
69 |
+
encoder_hidden_states,
|
70 |
+
pooled_projections,
|
71 |
+
timestep,
|
72 |
+
img_ids,
|
73 |
+
txt_ids,
|
74 |
+
guidance,
|
75 |
+
joint_attention_kwargs,
|
76 |
+
controlnet_block_samples,
|
77 |
+
controlnet_single_block_samples,
|
78 |
+
return_dict,
|
79 |
+
) = prepare_params(**params)
|
80 |
+
|
81 |
+
if joint_attention_kwargs is not None:
|
82 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
83 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
84 |
+
else:
|
85 |
+
lora_scale = 1.0
|
86 |
+
|
87 |
+
if USE_PEFT_BACKEND:
|
88 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
89 |
+
scale_lora_layers(self, lora_scale)
|
90 |
+
else:
|
91 |
+
if (
|
92 |
+
joint_attention_kwargs is not None
|
93 |
+
and joint_attention_kwargs.get("scale", None) is not None
|
94 |
+
):
|
95 |
+
logger.warning(
|
96 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
97 |
+
)
|
98 |
+
with enable_lora((self.x_embedder,), model_config.get("latent_lora", False)):
|
99 |
+
hidden_states = self.x_embedder(hidden_states)
|
100 |
+
condition_latents = self.x_embedder(condition_latents) if use_condition else None
|
101 |
+
|
102 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
103 |
+
if guidance is not None:
|
104 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
105 |
+
else:
|
106 |
+
guidance = None
|
107 |
+
temb = (
|
108 |
+
self.time_text_embed(timestep, pooled_projections)
|
109 |
+
if guidance is None
|
110 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
111 |
+
)
|
112 |
+
cond_temb = (
|
113 |
+
self.time_text_embed(torch.ones_like(timestep) * c_t * 1000, pooled_projections)
|
114 |
+
if guidance is None
|
115 |
+
else self.time_text_embed(
|
116 |
+
torch.ones_like(timestep) * c_t * 1000, guidance, pooled_projections
|
117 |
+
)
|
118 |
+
)
|
119 |
+
if hasattr(self, "cond_type_embed") and condition_type_ids is not None:
|
120 |
+
cond_type_proj = self.time_text_embed.time_proj(condition_type_ids[0])
|
121 |
+
cond_type_emb = self.cond_type_embed(cond_type_proj.to(dtype=cond_temb.dtype))
|
122 |
+
cond_temb = cond_temb + cond_type_emb
|
123 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
124 |
+
|
125 |
+
if txt_ids.ndim == 3:
|
126 |
+
logger.warning(
|
127 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
128 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
129 |
+
)
|
130 |
+
txt_ids = txt_ids[0]
|
131 |
+
if img_ids.ndim == 3:
|
132 |
+
logger.warning(
|
133 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
134 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
135 |
+
)
|
136 |
+
img_ids = img_ids[0]
|
137 |
+
|
138 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
139 |
+
image_rotary_emb = self.pos_embed(ids)
|
140 |
+
if use_condition:
|
141 |
+
cond_ids = condition_ids
|
142 |
+
cond_rotary_emb = self.pos_embed(cond_ids)
|
143 |
+
|
144 |
+
# hidden_states = torch.cat([hidden_states, condition_latents], dim=1)
|
145 |
+
|
146 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
147 |
+
if self.training and self.gradient_checkpointing:
|
148 |
+
|
149 |
+
def create_custom_forward(module, return_dict=None):
|
150 |
+
def custom_forward(*inputs):
|
151 |
+
if return_dict is not None:
|
152 |
+
return module(*inputs, return_dict=return_dict)
|
153 |
+
else:
|
154 |
+
return module(*inputs)
|
155 |
+
|
156 |
+
return custom_forward
|
157 |
+
|
158 |
+
ckpt_kwargs: Dict[str, Any] = (
|
159 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
160 |
+
)
|
161 |
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
162 |
+
create_custom_forward(block),
|
163 |
+
hidden_states,
|
164 |
+
encoder_hidden_states,
|
165 |
+
temb,
|
166 |
+
image_rotary_emb,
|
167 |
+
**ckpt_kwargs,
|
168 |
+
)
|
169 |
+
|
170 |
+
else:
|
171 |
+
encoder_hidden_states, hidden_states, condition_latents = block_forward(
|
172 |
+
block,
|
173 |
+
model_config=model_config,
|
174 |
+
hidden_states=hidden_states,
|
175 |
+
encoder_hidden_states=encoder_hidden_states,
|
176 |
+
condition_latents=condition_latents if use_condition else None,
|
177 |
+
temb=temb,
|
178 |
+
cond_temb=cond_temb if use_condition else None,
|
179 |
+
cond_rotary_emb=cond_rotary_emb if use_condition else None,
|
180 |
+
image_rotary_emb=image_rotary_emb,
|
181 |
+
)
|
182 |
+
|
183 |
+
# controlnet residual
|
184 |
+
if controlnet_block_samples is not None:
|
185 |
+
interval_control = len(self.transformer_blocks) / len(
|
186 |
+
controlnet_block_samples
|
187 |
+
)
|
188 |
+
interval_control = int(np.ceil(interval_control))
|
189 |
+
hidden_states = (
|
190 |
+
hidden_states
|
191 |
+
+ controlnet_block_samples[index_block // interval_control]
|
192 |
+
)
|
193 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
194 |
+
|
195 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
196 |
+
if self.training and self.gradient_checkpointing:
|
197 |
+
|
198 |
+
def create_custom_forward(module, return_dict=None):
|
199 |
+
def custom_forward(*inputs):
|
200 |
+
if return_dict is not None:
|
201 |
+
return module(*inputs, return_dict=return_dict)
|
202 |
+
else:
|
203 |
+
return module(*inputs)
|
204 |
+
|
205 |
+
return custom_forward
|
206 |
+
|
207 |
+
ckpt_kwargs: Dict[str, Any] = (
|
208 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
209 |
+
)
|
210 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
211 |
+
create_custom_forward(block),
|
212 |
+
hidden_states,
|
213 |
+
temb,
|
214 |
+
image_rotary_emb,
|
215 |
+
**ckpt_kwargs,
|
216 |
+
)
|
217 |
+
|
218 |
+
else:
|
219 |
+
result = single_block_forward(
|
220 |
+
block,
|
221 |
+
model_config=model_config,
|
222 |
+
hidden_states=hidden_states,
|
223 |
+
temb=temb,
|
224 |
+
image_rotary_emb=image_rotary_emb,
|
225 |
+
**(
|
226 |
+
{
|
227 |
+
"condition_latents": condition_latents,
|
228 |
+
"cond_temb": cond_temb,
|
229 |
+
"cond_rotary_emb": cond_rotary_emb,
|
230 |
+
}
|
231 |
+
if use_condition_in_single_blocks and use_condition
|
232 |
+
else {}
|
233 |
+
),
|
234 |
+
)
|
235 |
+
if use_condition_in_single_blocks and use_condition:
|
236 |
+
hidden_states, condition_latents = result
|
237 |
+
else:
|
238 |
+
hidden_states = result
|
239 |
+
|
240 |
+
# controlnet residual
|
241 |
+
if controlnet_single_block_samples is not None:
|
242 |
+
interval_control = len(self.single_transformer_blocks) / len(
|
243 |
+
controlnet_single_block_samples
|
244 |
+
)
|
245 |
+
interval_control = int(np.ceil(interval_control))
|
246 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
247 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
248 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
249 |
+
)
|
250 |
+
|
251 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
252 |
+
|
253 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
254 |
+
output = self.proj_out(hidden_states)
|
255 |
+
if return_conditional_latents:
|
256 |
+
condition_latents = (
|
257 |
+
self.norm_out(condition_latents, cond_temb) if use_condition else None
|
258 |
+
)
|
259 |
+
condition_output = self.proj_out(condition_latents) if use_condition else None
|
260 |
+
|
261 |
+
if USE_PEFT_BACKEND:
|
262 |
+
# remove `lora_scale` from each PEFT layer
|
263 |
+
unscale_lora_layers(self, lora_scale)
|
264 |
+
|
265 |
+
if not return_dict:
|
266 |
+
return (
|
267 |
+
(output,) if not return_conditional_latents else (output, condition_output)
|
268 |
+
)
|
269 |
+
|
270 |
+
return Transformer2DModelOutput(sample=output)
|
utils/ai_generator.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
# utils/ai_generator.py
|
2 |
|
3 |
import os
|
4 |
-
import time
|
|
|
5 |
import torch
|
6 |
import random
|
7 |
from utils.ai_generator_diffusers_flux import generate_ai_image_local
|
@@ -34,6 +35,9 @@ def generate_ai_image(
|
|
34 |
lora_weights=None,
|
35 |
conditioned_image=None,
|
36 |
pipeline = "FluxPipeline",
|
|
|
|
|
|
|
37 |
*args,
|
38 |
**kwargs
|
39 |
):
|
@@ -51,7 +55,9 @@ def generate_ai_image(
|
|
51 |
seed=seed,
|
52 |
conditioned_image=conditioned_image,
|
53 |
pipeline_name=pipeline,
|
54 |
-
strength=
|
|
|
|
|
55 |
)
|
56 |
else:
|
57 |
print("No local GPU available. Sending request to Hugging Face API.")
|
@@ -59,10 +65,12 @@ def generate_ai_image(
|
|
59 |
map_option,
|
60 |
prompt_textbox_value,
|
61 |
neg_prompt_textbox_value,
|
62 |
-
model
|
|
|
|
|
63 |
)
|
64 |
|
65 |
-
def generate_ai_image_remote(map_option, prompt_textbox_value, neg_prompt_textbox_value, model, height=512, width=
|
66 |
max_retries = 3
|
67 |
retry_delay = 4 # Initial delay in seconds
|
68 |
|
|
|
1 |
# utils/ai_generator.py
|
2 |
|
3 |
import os
|
4 |
+
import time
|
5 |
+
from turtle import width # Added for implementing delays
|
6 |
import torch
|
7 |
import random
|
8 |
from utils.ai_generator_diffusers_flux import generate_ai_image_local
|
|
|
35 |
lora_weights=None,
|
36 |
conditioned_image=None,
|
37 |
pipeline = "FluxPipeline",
|
38 |
+
width=912,
|
39 |
+
height=512,
|
40 |
+
strength=0.5,
|
41 |
*args,
|
42 |
**kwargs
|
43 |
):
|
|
|
55 |
seed=seed,
|
56 |
conditioned_image=conditioned_image,
|
57 |
pipeline_name=pipeline,
|
58 |
+
strength=strength,
|
59 |
+
height=height,
|
60 |
+
width=width
|
61 |
)
|
62 |
else:
|
63 |
print("No local GPU available. Sending request to Hugging Face API.")
|
|
|
65 |
map_option,
|
66 |
prompt_textbox_value,
|
67 |
neg_prompt_textbox_value,
|
68 |
+
model,
|
69 |
+
height=height,
|
70 |
+
width=width
|
71 |
)
|
72 |
|
73 |
+
def generate_ai_image_remote(map_option, prompt_textbox_value, neg_prompt_textbox_value, model, height=512, width=912, num_inference_steps=30, guidance_scale=3.5, seed=777):
|
74 |
max_retries = 3
|
75 |
retry_delay = 4 # Initial delay in seconds
|
76 |
|
utils/ai_generator_diffusers_flux.py
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
# utils/ai_generator_diffusers_flux.py
|
2 |
import os
|
3 |
import torch
|
4 |
-
from diffusers import FluxPipeline,FluxImg2ImgPipeline
|
5 |
import accelerate
|
6 |
import transformers
|
7 |
import safetensors
|
8 |
import xformers
|
9 |
from diffusers.utils import load_image
|
10 |
-
|
11 |
from PIL import Image
|
12 |
from tempfile import NamedTemporaryFile
|
13 |
from src.condition import Condition
|
@@ -16,15 +16,14 @@ from utils.image_utils import (
|
|
16 |
crop_and_resize_image,
|
17 |
)
|
18 |
from utils.version_info import (
|
19 |
-
versions_html,
|
20 |
get_torch_info,
|
21 |
get_diffusers_version,
|
22 |
get_transformers_version,
|
23 |
get_xformers_version
|
24 |
)
|
25 |
-
from utils.lora_details import get_trigger_words
|
26 |
from utils.color_utils import detect_color_format
|
27 |
-
|
28 |
from pathlib import Path
|
29 |
import warnings
|
30 |
warnings.filterwarnings("ignore", message=".*Torch was not compiled with flash attention.*")
|
@@ -93,6 +92,7 @@ def generate_image_from_text(
|
|
93 |
generate_params = {k: v for k, v in generate_params.items() if v is not None}
|
94 |
result = pipe(**generate_params)
|
95 |
image = result.images[0]
|
|
|
96 |
return image
|
97 |
|
98 |
def generate_image_lowmem(
|
@@ -101,10 +101,10 @@ def generate_image_lowmem(
|
|
101 |
model_name="black-forest-labs/FLUX.1-dev",
|
102 |
lora_weights=None,
|
103 |
conditioned_image=None,
|
104 |
-
image_width=
|
105 |
image_height=848,
|
106 |
guidance_scale=3.5,
|
107 |
-
num_inference_steps=
|
108 |
seed=0,
|
109 |
true_cfg_scale=1.0,
|
110 |
pipeline_name="FluxPipeline",
|
@@ -117,7 +117,7 @@ def generate_image_lowmem(
|
|
117 |
raise ValueError(f"Unsupported pipeline type '{pipeline_name}'. "
|
118 |
f"Available options: {list(PIPELINE_CLASSES.keys())}")
|
119 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
120 |
-
print(f"device:{device}\nmodel_name:{model_name}\n")
|
121 |
print(f"\n {get_torch_info()}\n")
|
122 |
# Disable gradient calculations
|
123 |
with torch.no_grad():
|
@@ -141,27 +141,59 @@ def generate_image_lowmem(
|
|
141 |
if pipeline_name == "FluxPipeline":
|
142 |
pipe.enable_vae_tiling()
|
143 |
# Load LoRA weights
|
|
|
144 |
if lora_weights:
|
145 |
for lora_weight in lora_weights:
|
146 |
lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
|
|
|
147 |
if lora_configs:
|
148 |
for config in lora_configs:
|
149 |
# Load LoRA weights with optional weight_name and adapter_name
|
150 |
-
weight_name
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
# Apply 'pipe' configurations if present
|
166 |
if 'pipe' in config:
|
167 |
pipe_config = config['pipe']
|
@@ -174,6 +206,7 @@ def generate_image_lowmem(
|
|
174 |
print(f"Method {method_name} not found in pipe.")
|
175 |
else:
|
176 |
pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
|
|
|
177 |
generator = torch.Generator(device=device).manual_seed(seed)
|
178 |
conditions = []
|
179 |
if conditioned_image is not None:
|
@@ -194,8 +227,20 @@ def generate_image_lowmem(
|
|
194 |
"negative_prompt": neg_prompt,
|
195 |
"true_cfg_scale": true_cfg_scale,
|
196 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
generate_params = {
|
198 |
-
"prompt": text,
|
199 |
"height": image_height,
|
200 |
"width": image_width,
|
201 |
"guidance_scale": guidance_scale,
|
@@ -204,6 +249,7 @@ def generate_image_lowmem(
|
|
204 |
if additional_parameters:
|
205 |
generate_params.update(additional_parameters)
|
206 |
generate_params = {k: v for k, v in generate_params.items() if v is not None}
|
|
|
207 |
# Generate the image
|
208 |
result = pipe(**generate_params)
|
209 |
image = result.images[0]
|
@@ -214,6 +260,7 @@ def generate_image_lowmem(
|
|
214 |
# Delete the pipeline and clear cache
|
215 |
del pipe
|
216 |
torch.cuda.empty_cache()
|
|
|
217 |
print(torch.cuda.memory_summary(device=None, abbreviated=False))
|
218 |
return image
|
219 |
|
@@ -225,8 +272,8 @@ def generate_ai_image_local (
|
|
225 |
lora_weights=None,
|
226 |
conditioned_image=None,
|
227 |
height=512,
|
228 |
-
width=
|
229 |
-
num_inference_steps=
|
230 |
guidance_scale=3.5,
|
231 |
seed=777,
|
232 |
pipeline_name="FluxPipeline",
|
@@ -293,4 +340,20 @@ def generate_ai_image_local (
|
|
293 |
return tmp.name
|
294 |
except Exception as e:
|
295 |
print(f"Error generating AI image: {e}")
|
296 |
-
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# utils/ai_generator_diffusers_flux.py
|
2 |
import os
|
3 |
import torch
|
4 |
+
from diffusers import FluxPipeline,FluxImg2ImgPipeline,FluxControlPipeline
|
5 |
import accelerate
|
6 |
import transformers
|
7 |
import safetensors
|
8 |
import xformers
|
9 |
from diffusers.utils import load_image
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
from PIL import Image
|
12 |
from tempfile import NamedTemporaryFile
|
13 |
from src.condition import Condition
|
|
|
16 |
crop_and_resize_image,
|
17 |
)
|
18 |
from utils.version_info import (
|
|
|
19 |
get_torch_info,
|
20 |
get_diffusers_version,
|
21 |
get_transformers_version,
|
22 |
get_xformers_version
|
23 |
)
|
24 |
+
from utils.lora_details import get_trigger_words, approximate_token_count, split_prompt_precisely
|
25 |
from utils.color_utils import detect_color_format
|
26 |
+
import utils.misc as misc
|
27 |
from pathlib import Path
|
28 |
import warnings
|
29 |
warnings.filterwarnings("ignore", message=".*Torch was not compiled with flash attention.*")
|
|
|
92 |
generate_params = {k: v for k, v in generate_params.items() if v is not None}
|
93 |
result = pipe(**generate_params)
|
94 |
image = result.images[0]
|
95 |
+
pipe.unload_lora_weights()
|
96 |
return image
|
97 |
|
98 |
def generate_image_lowmem(
|
|
|
101 |
model_name="black-forest-labs/FLUX.1-dev",
|
102 |
lora_weights=None,
|
103 |
conditioned_image=None,
|
104 |
+
image_width=1368,
|
105 |
image_height=848,
|
106 |
guidance_scale=3.5,
|
107 |
+
num_inference_steps=30,
|
108 |
seed=0,
|
109 |
true_cfg_scale=1.0,
|
110 |
pipeline_name="FluxPipeline",
|
|
|
117 |
raise ValueError(f"Unsupported pipeline type '{pipeline_name}'. "
|
118 |
f"Available options: {list(PIPELINE_CLASSES.keys())}")
|
119 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
120 |
+
print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n")
|
121 |
print(f"\n {get_torch_info()}\n")
|
122 |
# Disable gradient calculations
|
123 |
with torch.no_grad():
|
|
|
141 |
if pipeline_name == "FluxPipeline":
|
142 |
pipe.enable_vae_tiling()
|
143 |
# Load LoRA weights
|
144 |
+
# note: does not yet handle multiple LoRA weights with different names, needs .set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125])
|
145 |
if lora_weights:
|
146 |
for lora_weight in lora_weights:
|
147 |
lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
|
148 |
+
lora_weight_set = False
|
149 |
if lora_configs:
|
150 |
for config in lora_configs:
|
151 |
# Load LoRA weights with optional weight_name and adapter_name
|
152 |
+
if 'weight_name' in config:
|
153 |
+
weight_name = config.get("weight_name")
|
154 |
+
adapter_name = config.get("adapter_name")
|
155 |
+
lora_collection = config.get("lora_collection")
|
156 |
+
if weight_name and adapter_name and lora_collection and lora_weight_set == False:
|
157 |
+
pipe.load_lora_weights(
|
158 |
+
lora_collection,
|
159 |
+
weight_name=weight_name,
|
160 |
+
adapter_name=adapter_name,
|
161 |
+
token=constants.HF_API_TOKEN
|
162 |
+
)
|
163 |
+
lora_weight_set = True
|
164 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
|
165 |
+
elif weight_name and adapter_name==None and lora_collection and lora_weight_set == False:
|
166 |
+
pipe.load_lora_weights(
|
167 |
+
lora_collection,
|
168 |
+
weight_name=weight_name,
|
169 |
+
token=constants.HF_API_TOKEN
|
170 |
+
)
|
171 |
+
lora_weight_set = True
|
172 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
|
173 |
+
elif weight_name and adapter_name and lora_weight_set == False:
|
174 |
+
pipe.load_lora_weights(
|
175 |
+
lora_weight,
|
176 |
+
weight_name=weight_name,
|
177 |
+
adapter_name=adapter_name,
|
178 |
+
token=constants.HF_API_TOKEN
|
179 |
+
)
|
180 |
+
lora_weight_set = True
|
181 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
|
182 |
+
elif weight_name and adapter_name==None and lora_weight_set == False:
|
183 |
+
pipe.load_lora_weights(
|
184 |
+
lora_weight,
|
185 |
+
weight_name=weight_name,
|
186 |
+
token=constants.HF_API_TOKEN
|
187 |
+
)
|
188 |
+
lora_weight_set = True
|
189 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
|
190 |
+
elif lora_weight_set == False:
|
191 |
+
pipe.load_lora_weights(
|
192 |
+
lora_weight,
|
193 |
+
token=constants.HF_API_TOKEN
|
194 |
+
)
|
195 |
+
lora_weight_set = True
|
196 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
|
197 |
# Apply 'pipe' configurations if present
|
198 |
if 'pipe' in config:
|
199 |
pipe_config = config['pipe']
|
|
|
206 |
print(f"Method {method_name} not found in pipe.")
|
207 |
else:
|
208 |
pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
|
209 |
+
# Set the random seed for reproducibility
|
210 |
generator = torch.Generator(device=device).manual_seed(seed)
|
211 |
conditions = []
|
212 |
if conditioned_image is not None:
|
|
|
227 |
"negative_prompt": neg_prompt,
|
228 |
"true_cfg_scale": true_cfg_scale,
|
229 |
}
|
230 |
+
# handle long prompts by splitting them
|
231 |
+
if approximate_token_count(text) > 76:
|
232 |
+
prompt, prompt2 = split_prompt_precisely(text)
|
233 |
+
prompt_parameters = {
|
234 |
+
"prompt" : prompt,
|
235 |
+
"prompt_2": prompt2
|
236 |
+
}
|
237 |
+
else:
|
238 |
+
prompt_parameters = {
|
239 |
+
"prompt" :text
|
240 |
+
}
|
241 |
+
additional_parameters.update(prompt_parameters)
|
242 |
+
# Combine all parameters
|
243 |
generate_params = {
|
|
|
244 |
"height": image_height,
|
245 |
"width": image_width,
|
246 |
"guidance_scale": guidance_scale,
|
|
|
249 |
if additional_parameters:
|
250 |
generate_params.update(additional_parameters)
|
251 |
generate_params = {k: v for k, v in generate_params.items() if v is not None}
|
252 |
+
print(f"generate_params: {generate_params}")
|
253 |
# Generate the image
|
254 |
result = pipe(**generate_params)
|
255 |
image = result.images[0]
|
|
|
260 |
# Delete the pipeline and clear cache
|
261 |
del pipe
|
262 |
torch.cuda.empty_cache()
|
263 |
+
torch.cuda.ipc_collect()
|
264 |
print(torch.cuda.memory_summary(device=None, abbreviated=False))
|
265 |
return image
|
266 |
|
|
|
272 |
lora_weights=None,
|
273 |
conditioned_image=None,
|
274 |
height=512,
|
275 |
+
width=912,
|
276 |
+
num_inference_steps=30,
|
277 |
guidance_scale=3.5,
|
278 |
seed=777,
|
279 |
pipeline_name="FluxPipeline",
|
|
|
340 |
return tmp.name
|
341 |
except Exception as e:
|
342 |
print(f"Error generating AI image: {e}")
|
343 |
+
return None
|
344 |
+
|
345 |
+
# does not work
|
346 |
+
def merge_LoRA_weights(model="black-forest-labs/FLUX.1-dev",
|
347 |
+
lora_weights="Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1"):
|
348 |
+
|
349 |
+
model_suffix = model.split("/")[-1]
|
350 |
+
if model_suffix not in lora_weights:
|
351 |
+
raise ValueError(f"The model suffix '{model_suffix}' must be in the lora_weights string '{lora_weights}' to proceed.")
|
352 |
+
|
353 |
+
pipe = FluxPipeline.from_pretrained(model, torch_dtype=torch.bfloat16)
|
354 |
+
pipe.load_lora_weights(lora_weights)
|
355 |
+
pipe.save_lora_weights(os.getenv("TMPDIR"))
|
356 |
+
lora_name = lora_weights.split("/")[-1] + "-merged"
|
357 |
+
pipe.save_pretrained(lora_name)
|
358 |
+
pipe.unload_lora_weights()
|
359 |
+
|
utils/color_utils.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# utils/color_utils.py
|
2 |
+
|
3 |
+
from PIL import Image, ImageColor
|
4 |
+
import re
|
5 |
+
import cairocffi as cairo
|
6 |
+
import pangocffi
|
7 |
+
import pangocairocffi
|
8 |
+
|
9 |
+
|
10 |
+
def multiply_and_clamp(value, scale, min_value=0, max_value=255):
|
11 |
+
return min(max(value * scale, min_value), max_value)
|
12 |
+
|
13 |
+
# Convert decimal color to hexadecimal color (rgb or rgba)
|
14 |
+
def rgb_to_hex(rgb):
|
15 |
+
color = "#"
|
16 |
+
for i in rgb:
|
17 |
+
num = int(i)
|
18 |
+
color += str(hex(num))[-2:].replace("x", "0").upper()
|
19 |
+
return color
|
20 |
+
|
21 |
+
def parse_hex_color(hex_color, base = 1):
|
22 |
+
"""
|
23 |
+
This function is set to pass the color in (1.0,1.0, 1.0, 1.0) format.
|
24 |
+
Change base to 255 to get the color in (255, 255, 255, 255) format.
|
25 |
+
Parses a hex color string or tuple into RGBA components.
|
26 |
+
Parses color values specified in various formats and convert them into normalized RGBA components
|
27 |
+
suitable for use in color calculations, rendering, or manipulation.
|
28 |
+
|
29 |
+
Supports:
|
30 |
+
- #RRGGBBAA
|
31 |
+
- #RRGGBB (assumes full opacity)
|
32 |
+
- (r, g, b, a) tuple
|
33 |
+
"""
|
34 |
+
if isinstance(hex_color, tuple):
|
35 |
+
if len(hex_color) == 4:
|
36 |
+
r, g, b, a = hex_color
|
37 |
+
elif len(hex_color) == 3:
|
38 |
+
r, g, b = hex_color
|
39 |
+
a = 1.0 # Full opacity
|
40 |
+
else:
|
41 |
+
raise ValueError("Tuple must be in the format (r, g, b) or (r, g, b, a)")
|
42 |
+
return r / 255.0, g / 255.0, b / 255.0, a / 255.0 if a <= 1 else a
|
43 |
+
|
44 |
+
if hex_color.startswith("#"):
|
45 |
+
if len(hex_color) == 6:
|
46 |
+
r = int(hex_color[0:2], 16) / 255.0
|
47 |
+
g = int(hex_color[2:4], 16) / 255.0
|
48 |
+
b = int(hex_color[4:6], 16) / 255.0
|
49 |
+
a = 1.0 # Full opacity
|
50 |
+
elif len(hex_color) == 8:
|
51 |
+
r = int(hex_color[0:2], 16) / 255.0
|
52 |
+
g = int(hex_color[2:4], 16) / 255.0
|
53 |
+
b = int(hex_color[4:6], 16) / 255.0
|
54 |
+
a = int(hex_color[6:8], 16) / 255.0
|
55 |
+
else:
|
56 |
+
try:
|
57 |
+
r, g, b, a = ImageColor.getcolor(hex_color, "RGBA")
|
58 |
+
r = r / 255
|
59 |
+
g = g / 255
|
60 |
+
b = b / 255
|
61 |
+
a = a / 255
|
62 |
+
except:
|
63 |
+
raise ValueError("Hex color must be in the format RRGGBB, RRGGBBAA, ( r, g, b, a) or a common color name")
|
64 |
+
return multiply_and_clamp(r,base, max_value= base), multiply_and_clamp(g, base, max_value= base), multiply_and_clamp(b , base, max_value= base), multiply_and_clamp(a , base, max_value= base)
|
65 |
+
|
66 |
+
# Define a function to convert a hexadecimal color code to an RGB(A) tuple
|
67 |
+
def hex_to_rgb(hex):
|
68 |
+
if hex.startswith("#"):
|
69 |
+
clean_hex = hex.replace('#','')
|
70 |
+
# Use a generator expression to convert pairs of hexadecimal digits to integers and create a tuple
|
71 |
+
return tuple(int(clean_hex[i:i+2], 16) for i in range(0, len(clean_hex),2))
|
72 |
+
else:
|
73 |
+
return detect_color_format(hex)
|
74 |
+
|
75 |
+
def detect_color_format(color):
|
76 |
+
"""
|
77 |
+
Detects if the color is in RGB, RGBA, or hex format,
|
78 |
+
and converts it to an RGBA tuple with integer components.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
color (str or tuple): The color to detect.
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
tuple: The color in RGBA format as a tuple of 4 integers.
|
85 |
+
|
86 |
+
Raises:
|
87 |
+
ValueError: If the input color is not in a recognized format.
|
88 |
+
"""
|
89 |
+
# Handle color as a tuple of floats or integers
|
90 |
+
if isinstance(color, tuple):
|
91 |
+
if len(color) == 3 or len(color) == 4:
|
92 |
+
# Ensure all components are numbers
|
93 |
+
if all(isinstance(c, (int, float)) for c in color):
|
94 |
+
r, g, b = color[:3]
|
95 |
+
a = color[3] if len(color) == 4 else 255
|
96 |
+
return (
|
97 |
+
max(0, min(255, int(round(r)))),
|
98 |
+
max(0, min(255, int(round(g)))),
|
99 |
+
max(0, min(255, int(round(b)))),
|
100 |
+
max(0, min(255, int(round(a * 255)) if a <= 1 else round(a))),
|
101 |
+
)
|
102 |
+
else:
|
103 |
+
raise ValueError(f"Invalid color tuple length: {len(color)}")
|
104 |
+
# Handle hex color codes
|
105 |
+
if isinstance(color, str):
|
106 |
+
color = color.strip()
|
107 |
+
# Try to use PIL's ImageColor
|
108 |
+
try:
|
109 |
+
rgba = ImageColor.getcolor(color, "RGBA")
|
110 |
+
return rgba
|
111 |
+
except ValueError:
|
112 |
+
pass
|
113 |
+
# Handle 'rgba(r, g, b, a)' string format
|
114 |
+
rgba_match = re.match(r'rgba\(\s*([0-9.]+),\s*([0-9.]+),\s*([0-9.]+),\s*([0-9.]+)\s*\)', color)
|
115 |
+
if rgba_match:
|
116 |
+
r, g, b, a = map(float, rgba_match.groups())
|
117 |
+
return (
|
118 |
+
max(0, min(255, int(round(r)))),
|
119 |
+
max(0, min(255, int(round(g)))),
|
120 |
+
max(0, min(255, int(round(b)))),
|
121 |
+
max(0, min(255, int(round(a * 255)) if a <= 1 else round(a))),
|
122 |
+
)
|
123 |
+
# Handle 'rgb(r, g, b)' string format
|
124 |
+
rgb_match = re.match(r'rgb\(\s*([0-9.]+),\s*([0-9.]+),\s*([0-9.]+)\s*\)', color)
|
125 |
+
if rgb_match:
|
126 |
+
r, g, b = map(float, rgb_match.groups())
|
127 |
+
return (
|
128 |
+
max(0, min(255, int(round(r)))),
|
129 |
+
max(0, min(255, int(round(g)))),
|
130 |
+
max(0, min(255, int(round(b)))),
|
131 |
+
255,
|
132 |
+
)
|
133 |
+
|
134 |
+
# If none of the above conversions work, raise an error
|
135 |
+
raise ValueError(f"Invalid color format: {color}")
|
136 |
+
|
137 |
+
|
138 |
+
def update_color_opacity(color, opacity):
|
139 |
+
"""
|
140 |
+
Updates the opacity of a color value.
|
141 |
+
|
142 |
+
Parameters:
|
143 |
+
color (tuple): A color represented as an RGB or RGBA tuple.
|
144 |
+
opacity (int): An integer between 0 and 255 representing the desired opacity.
|
145 |
+
|
146 |
+
Returns:
|
147 |
+
tuple: The color as an RGBA tuple with the updated opacity.
|
148 |
+
"""
|
149 |
+
# Ensure opacity is within the valid range
|
150 |
+
opacity = max(0, min(255, int(opacity)))
|
151 |
+
|
152 |
+
if len(color) == 3:
|
153 |
+
# Color is RGB, add the opacity to make it RGBA
|
154 |
+
return color + (opacity,)
|
155 |
+
elif len(color) == 4:
|
156 |
+
# Color is RGBA, replace the alpha value with the new opacity
|
157 |
+
return color[:3] + (opacity,)
|
158 |
+
else:
|
159 |
+
raise ValueError(f"Invalid color format: {color}. Must be an RGB or RGBA tuple.")
|
160 |
+
|
161 |
+
def draw_text_with_emojis(image, text, font_color, offset_x, offset_y, font_name, font_size):
|
162 |
+
"""
|
163 |
+
Draws text with emojis directly onto the given PIL image at specified coordinates with the specified color.
|
164 |
+
Parameters:
|
165 |
+
image (PIL.Image.Image): The RGBA image to draw on.
|
166 |
+
text (str): The text to draw, including emojis.
|
167 |
+
font_color (tuple): RGBA color tuple for the text (e.g., (255, 0, 0, 255)).
|
168 |
+
offset_x (int): The x-coordinate for the text center position.
|
169 |
+
offset_y (int): The y-coordinate for the text center position.
|
170 |
+
font_name (str): The name of the font family.
|
171 |
+
font_size (int): Size of the font.
|
172 |
+
Returns:
|
173 |
+
None: The function modifies the image in place.
|
174 |
+
"""
|
175 |
+
if image.mode != 'RGBA':
|
176 |
+
raise ValueError("Image must be in RGBA mode.")
|
177 |
+
# Convert PIL image to a mutable bytearray
|
178 |
+
img_data = bytearray(image.tobytes("raw", "BGRA"))
|
179 |
+
# Create a Cairo ImageSurface that wraps the image's data
|
180 |
+
surface = cairo.ImageSurface.create_for_data(
|
181 |
+
img_data,
|
182 |
+
cairo.FORMAT_ARGB32,
|
183 |
+
image.width,
|
184 |
+
image.height,
|
185 |
+
image.width * 4
|
186 |
+
)
|
187 |
+
context = cairo.Context(surface)
|
188 |
+
# Create Pango layout
|
189 |
+
layout = pangocairocffi.create_layout(context)
|
190 |
+
layout._set_text(text)
|
191 |
+
# Set font description
|
192 |
+
desc = pangocffi.FontDescription()
|
193 |
+
desc._set_family(font_name)
|
194 |
+
desc._set_size(pangocffi.units_from_double(font_size))
|
195 |
+
layout._set_font_description(desc)
|
196 |
+
# Set text color
|
197 |
+
r, g, b, a = parse_hex_color(font_color)
|
198 |
+
context.set_source_rgba(r , g , b , a )
|
199 |
+
# Move to the position (top-left corner adjusted to center the text)
|
200 |
+
context.move_to(offset_x, offset_y)
|
201 |
+
# Render the text
|
202 |
+
pangocairocffi.show_layout(context, layout)
|
203 |
+
# Flush the surface to ensure all drawing operations are complete
|
204 |
+
surface.flush()
|
205 |
+
# Convert the modified bytearray back to a PIL Image
|
206 |
+
modified_image = Image.frombuffer(
|
207 |
+
"RGBA",
|
208 |
+
(image.width, image.height),
|
209 |
+
bytes(img_data),
|
210 |
+
"raw",
|
211 |
+
"BGRA", # Cairo stores data in BGRA order
|
212 |
+
surface.get_stride(),
|
213 |
+
).convert("RGBA")
|
214 |
+
return modified_image
|
utils/constants.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
-
import os
|
2 |
#Set the environment variables
|
3 |
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
4 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:256,expandable_segments:True"
|
5 |
-
IS_SHARED_SPACE = "Surn/
|
6 |
|
7 |
# Set the temporary folder location
|
8 |
os.environ['TEMP'] = r'e:\\TMP'
|
@@ -292,3 +292,29 @@ lut_folder = "./LUT"
|
|
292 |
lut_files = [os.path.join(lut_folder, f).replace("\\", "/") for f in os.listdir(lut_folder) if f.endswith(".cube")]
|
293 |
|
294 |
temp_files = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
#Set the environment variables
|
3 |
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
4 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:256,expandable_segments:True"
|
5 |
+
IS_SHARED_SPACE = "Surn/HexaGrid" in os.environ.get('SPACE_ID', '')
|
6 |
|
7 |
# Set the temporary folder location
|
8 |
os.environ['TEMP'] = r'e:\\TMP'
|
|
|
292 |
lut_files = [os.path.join(lut_folder, f).replace("\\", "/") for f in os.listdir(lut_folder) if f.endswith(".cube")]
|
293 |
|
294 |
temp_files = []
|
295 |
+
|
296 |
+
|
297 |
+
cards = [
|
298 |
+
"2♥️", "3♥️", "4♥️", "5♥️", "6♥️", "7♥️", "8♥️", "9♥️", "10♥️", "J♥️", "Q♥️", "K♥️", "A♥️",
|
299 |
+
"2♦️", "3♦️", "4♦️", "5♦️", "6♦️", "7♦️", "8♦️", "9♦️", "10♦️", "J♦️", "Q♦️", "K♦️", "A♦️",
|
300 |
+
"2♣️", "3♣️", "4♣️", "5♣️", "6♣️", "7♣️", "8♣️", "9♣️", "10♣️", "J♣️", "Q♣️", "K♣️", "A♣️",
|
301 |
+
"2♠️", "3♠️", "4♠️", "5♠️", "6♠️", "7♠️", "8♠️", "9♠️", "10♠️", "J♠️", "Q♠️", "K♠️", "A♠️"
|
302 |
+
]
|
303 |
+
cards_alternating = [
|
304 |
+
"2♥️", "3♥️", "4♥️", "5♥️", "6♥️", "7♥️", "8♥️", "9♥️", "10♥️", "J♥️", "Q♥️", "K♥️", "A♥️",
|
305 |
+
"2♣️", "3♣️", "4♣️", "5♣️", "6♣️", "7♣️", "8♣️", "9♣️", "10♣️", "J♣️", "Q♣️", "K♣️", "A♣️",
|
306 |
+
"2♦️", "3♦️", "4♦️", "5♦️", "6♦️", "7♦️", "8♦️", "9♦️", "10♦️", "J♦️", "Q♦️", "K♦️", "A♦️",
|
307 |
+
"2♠️", "3♠️", "4♠️", "5♠️", "6♠️", "7♠️", "8♠️", "9♠️", "10♠️", "J♠️", "Q♠️", "K♠️", "A♠️"
|
308 |
+
]
|
309 |
+
card_colors = [
|
310 |
+
"#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", # Hearts
|
311 |
+
"#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", # Diamonds
|
312 |
+
"#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", # Clubs
|
313 |
+
"#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000" # Spades
|
314 |
+
]
|
315 |
+
card_colors_alternating = [
|
316 |
+
"#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", # Hearts
|
317 |
+
"#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", # Clubs
|
318 |
+
"#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", "#FF0000", # Diamonds
|
319 |
+
"#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000", "#000000" # Spades
|
320 |
+
]
|
utils/depth_estimation.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# utils/depth_estimation.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import open3d as o3d
|
7 |
+
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
8 |
+
from pathlib import Path
|
9 |
+
import logging
|
10 |
+
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
|
11 |
+
from utils.image_utils import (
|
12 |
+
change_color,
|
13 |
+
open_image,
|
14 |
+
build_prerendered_images,
|
15 |
+
upscale_image,
|
16 |
+
crop_and_resize_image,
|
17 |
+
resize_image_with_aspect_ratio,
|
18 |
+
show_lut,
|
19 |
+
apply_lut_to_image_path
|
20 |
+
)
|
21 |
+
|
22 |
+
# Load models once during module import
|
23 |
+
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
|
24 |
+
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large", ignore_mismatched_sizes=True)
|
25 |
+
|
26 |
+
def estimate_depth(image):
|
27 |
+
# Ensure image is in RGB mode
|
28 |
+
if image.mode != "RGB":
|
29 |
+
image = image.convert("RGB")
|
30 |
+
|
31 |
+
# Resize the image for the model
|
32 |
+
image_resized = image.resize(
|
33 |
+
(image.width, image.height),
|
34 |
+
Image.Resampling.LANCZOS
|
35 |
+
)
|
36 |
+
|
37 |
+
# Prepare image for the model
|
38 |
+
encoding = image_processor(image_resized, return_tensors="pt")
|
39 |
+
|
40 |
+
# Forward pass
|
41 |
+
with torch.no_grad():
|
42 |
+
outputs = depth_model(**encoding)
|
43 |
+
predicted_depth = outputs.predicted_depth
|
44 |
+
|
45 |
+
# Interpolate to original size
|
46 |
+
prediction = torch.nn.functional.interpolate(
|
47 |
+
predicted_depth.unsqueeze(1),
|
48 |
+
size=(image.height, image.width),
|
49 |
+
mode="bicubic",
|
50 |
+
align_corners=False,
|
51 |
+
).squeeze()
|
52 |
+
|
53 |
+
# Convert to depth image
|
54 |
+
output = prediction.cpu().numpy()
|
55 |
+
depth_min = output.min()
|
56 |
+
depth_max = output.max()
|
57 |
+
max_val = (2**8) - 1
|
58 |
+
|
59 |
+
# Normalize and convert to 8-bit image
|
60 |
+
depth_image = max_val * (output - depth_min) / (depth_max - depth_min)
|
61 |
+
depth_image = depth_image.astype("uint8")
|
62 |
+
|
63 |
+
depth_pil = Image.fromarray(depth_image)
|
64 |
+
|
65 |
+
return depth_pil, output
|
66 |
+
|
67 |
+
def create_3d_model(rgb_image, depth_array, voxel_size_factor=0.01):
|
68 |
+
depth_o3d = o3d.geometry.Image(depth_array.astype(np.float32))
|
69 |
+
rgb_o3d = o3d.geometry.Image(np.array(rgb_image))
|
70 |
+
|
71 |
+
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
|
72 |
+
rgb_o3d,
|
73 |
+
depth_o3d,
|
74 |
+
convert_rgb_to_intensity=False
|
75 |
+
)
|
76 |
+
|
77 |
+
# Create a point cloud from the RGBD image
|
78 |
+
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic(
|
79 |
+
rgb_image.width,
|
80 |
+
rgb_image.height,
|
81 |
+
fx=1.0,
|
82 |
+
fy=1.0,
|
83 |
+
cx=rgb_image.width / 2.0,
|
84 |
+
cy=rgb_image.height / 2.0,
|
85 |
+
)
|
86 |
+
|
87 |
+
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
|
88 |
+
rgbd_image,
|
89 |
+
camera_intrinsic
|
90 |
+
)
|
91 |
+
|
92 |
+
# Voxel downsample
|
93 |
+
voxel_size = max(pcd.get_max_bound() - pcd.get_min_bound()) * voxel_size_factor
|
94 |
+
voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd, voxel_size=voxel_size)
|
95 |
+
|
96 |
+
# Save the 3D model to a temporary file
|
97 |
+
temp_dir = Path.cwd() / "temp_models"
|
98 |
+
temp_dir.mkdir(exist_ok=True)
|
99 |
+
model_path = temp_dir / "model.ply"
|
100 |
+
o3d.io.write_voxel_grid(str(model_path), voxel_grid)
|
101 |
+
|
102 |
+
return str(model_path)
|
103 |
+
|
104 |
+
def generate_depth_and_3d(input_image_path, voxel_size_factor):
|
105 |
+
image = Image.open(input_image_path).convert("RGB")
|
106 |
+
resized_image = resize_image_with_aspect_ratio(image, 2688, 1680)
|
107 |
+
depth_image, depth_array = estimate_depth(resized_image)
|
108 |
+
model_path = create_3d_model(resized_image, depth_array, voxel_size_factor=voxel_size_factor)
|
109 |
+
return depth_image, model_path
|
110 |
+
|
111 |
+
def generate_depth_button_click(depth_image_source, voxel_size_factor, input_image, output_image, overlay_image, bordered_image_output):
|
112 |
+
if depth_image_source == "Input Image":
|
113 |
+
image_path = input_image
|
114 |
+
elif depth_image_source == "Output Image":
|
115 |
+
image_path = output_image
|
116 |
+
elif depth_image_source == "Image with Margins":
|
117 |
+
image_path = bordered_image_output
|
118 |
+
else:
|
119 |
+
image_path = overlay_image
|
120 |
+
|
121 |
+
return generate_depth_and_3d(image_path, voxel_size_factor)
|
utils/excluded_colors.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# utils/excluded_colors.py
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
from utils.color_utils import (
|
5 |
+
hex_to_rgb,
|
6 |
+
)
|
7 |
+
from utils.image_utils import (
|
8 |
+
convert_str_to_int_or_zero,
|
9 |
+
)
|
10 |
+
|
11 |
+
excluded_color_list = gr.State([(0,0,0,0),(255,255,255,0)])
|
12 |
+
|
13 |
+
def add_color(color, excluded_colors_var):
|
14 |
+
excluded_colors = excluded_colors_var.value
|
15 |
+
# Convert the color from hex to RGBA
|
16 |
+
color = hex_to_rgb(color) + (255,)
|
17 |
+
if color not in [tuple(lst) for lst in excluded_colors]:
|
18 |
+
excluded_colors.append(color)
|
19 |
+
excluded_color_lst = [tuple(lst) for lst in excluded_colors]
|
20 |
+
else:
|
21 |
+
excluded_color_lst = [tuple(lst) for lst in excluded_colors]
|
22 |
+
return excluded_color_lst, excluded_color_lst
|
23 |
+
|
24 |
+
def delete_color(row, excluded_colors_var):
|
25 |
+
global excluded_color_list
|
26 |
+
excluded_colors = list(excluded_colors_var)
|
27 |
+
row_index = convert_str_to_int_or_zero(row)
|
28 |
+
print(f"Delete Excluded Color {row_index} of {len(excluded_colors) - 1}")
|
29 |
+
if row_index <= len(excluded_colors) - 1:
|
30 |
+
del excluded_colors[row_index]
|
31 |
+
excluded_color_lst = [tuple(lst) for lst in excluded_colors]
|
32 |
+
excluded_color_list = excluded_color_lst
|
33 |
+
return excluded_color_lst
|
34 |
+
else:
|
35 |
+
excluded_color_lst = [tuple(lst) for lst in excluded_color_list]
|
36 |
+
print(f"Row index {row_index} not found in the list:{excluded_color_lst}")
|
37 |
+
excluded_color_list = excluded_color_lst
|
38 |
+
return excluded_color_lst
|
39 |
+
|
40 |
+
def build_dataframe(excluded_colors_var):
|
41 |
+
excluded_colors = [tuple(lst) for lst in excluded_colors_var.value]
|
42 |
+
#print(f"input: {excluded_colors}")
|
43 |
+
return excluded_colors
|
44 |
+
|
45 |
+
def on_input(excluded_colors):
|
46 |
+
print(f"input: {excluded_colors}")
|
47 |
+
excluded_color_lst = [tuple(lst) for lst in excluded_colors]
|
48 |
+
print(f"output: {excluded_color_lst}")
|
49 |
+
return excluded_color_lst, excluded_color_lst
|
50 |
+
|
51 |
+
# Event listener for when the user selects a row
|
52 |
+
def on_color_display_select(selected_rows, event: gr.SelectData):
|
53 |
+
# Get the selected row
|
54 |
+
selected_index = event.index[0]
|
55 |
+
print(f"Selected row index:{selected_rows[selected_index]}, index: {selected_index}")
|
56 |
+
return selected_index
|
utils/file_utils.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# file_utils
|
2 |
+
import os
|
3 |
+
import utils.constants as constants
|
4 |
+
|
5 |
+
def cleanup_temp_files():
|
6 |
+
for file_path in constants.temp_files:
|
7 |
+
try:
|
8 |
+
os.remove(file_path)
|
9 |
+
except Exception as e:
|
10 |
+
print(f"Failed to delete temp file {file_path}: {e}")
|
utils/hex_grid.py
CHANGED
@@ -193,9 +193,7 @@ def generate_hexagon_grid_with_text(hex_size, border_size, input_image=None, ima
|
|
193 |
# Prepare the text and color lists
|
194 |
text_list = []
|
195 |
color_list = []
|
196 |
-
if add_hex_text_option == "
|
197 |
-
pass # Coordinates will be generated dynamically
|
198 |
-
elif add_hex_text_option == "Playing Cards Sequential":
|
199 |
text_list = constants.cards
|
200 |
color_list = constants.card_colors
|
201 |
elif add_hex_text_option == "Playing Cards Alternate Red and Black":
|
@@ -204,13 +202,13 @@ def generate_hexagon_grid_with_text(hex_size, border_size, input_image=None, ima
|
|
204 |
elif add_hex_text_option == "Custom List":
|
205 |
if custom_text_list:
|
206 |
#text_list = [text.strip() for text in custom_text_list.split(",")]
|
207 |
-
text_list = ast.literal_eval(custom_text_list) if custom_text_list else None
|
208 |
if custom_text_color_list:
|
209 |
#color_list = [color.strip() for color in custom_text_color_list.split(",")]
|
210 |
color_list = ast.literal_eval(custom_text_color_list) if custom_text_color_list else None
|
211 |
else:
|
212 |
-
|
213 |
-
|
214 |
hex_index = -1 # Initialize hex index
|
215 |
def draw_hexagon(x, y, color="#FFFFFFFF", rotation=0, outline_color="#12165380", outline_width=0, sides=6):
|
216 |
side_length = (hex_size * 2) / math.sqrt(3)
|
@@ -277,10 +275,12 @@ def generate_hexagon_grid_with_text(hex_size, border_size, input_image=None, ima
|
|
277 |
# Determine the text to draw
|
278 |
if add_hex_text_option == "Row-Column Coordinates":
|
279 |
text = f"{col},{row}"
|
|
|
|
|
280 |
elif text_list:
|
281 |
text = text_list[hex_index % len(text_list)]
|
282 |
else:
|
283 |
-
text =
|
284 |
# Determine the text color
|
285 |
if color_list:
|
286 |
# Extract the opacity from the border color and add to the color_list
|
@@ -296,7 +296,7 @@ def generate_hexagon_grid_with_text(hex_size, border_size, input_image=None, ima
|
|
296 |
text_color = border_color
|
297 |
#text_color = "#{:02x}{:02x}{:02x}{:02x}".format(*text_color)
|
298 |
# Skip if text is empty
|
299 |
-
if text !=
|
300 |
print(f"Drawing Text: {text} color: {text_color} size: {font_size}")
|
301 |
# Calculate text size using Pango
|
302 |
# Create a temporary surface to calculate text size
|
|
|
193 |
# Prepare the text and color lists
|
194 |
text_list = []
|
195 |
color_list = []
|
196 |
+
if add_hex_text_option == "Playing Cards Sequential":
|
|
|
|
|
197 |
text_list = constants.cards
|
198 |
color_list = constants.card_colors
|
199 |
elif add_hex_text_option == "Playing Cards Alternate Red and Black":
|
|
|
202 |
elif add_hex_text_option == "Custom List":
|
203 |
if custom_text_list:
|
204 |
#text_list = [text.strip() for text in custom_text_list.split(",")]
|
205 |
+
text_list = ast.literal_eval(custom_text_list) if custom_text_list else None
|
206 |
if custom_text_color_list:
|
207 |
#color_list = [color.strip() for color in custom_text_color_list.split(",")]
|
208 |
color_list = ast.literal_eval(custom_text_color_list) if custom_text_color_list else None
|
209 |
else:
|
210 |
+
# Coordinates will be generated dynamically
|
211 |
+
pass
|
212 |
hex_index = -1 # Initialize hex index
|
213 |
def draw_hexagon(x, y, color="#FFFFFFFF", rotation=0, outline_color="#12165380", outline_width=0, sides=6):
|
214 |
side_length = (hex_size * 2) / math.sqrt(3)
|
|
|
275 |
# Determine the text to draw
|
276 |
if add_hex_text_option == "Row-Column Coordinates":
|
277 |
text = f"{col},{row}"
|
278 |
+
elif add_hex_text_option == "Sequential Numbers":
|
279 |
+
text = f"{hex_index}"
|
280 |
elif text_list:
|
281 |
text = text_list[hex_index % len(text_list)]
|
282 |
else:
|
283 |
+
text = None
|
284 |
# Determine the text color
|
285 |
if color_list:
|
286 |
# Extract the opacity from the border color and add to the color_list
|
|
|
296 |
text_color = border_color
|
297 |
#text_color = "#{:02x}{:02x}{:02x}{:02x}".format(*text_color)
|
298 |
# Skip if text is empty
|
299 |
+
if text != None:
|
300 |
print(f"Drawing Text: {text} color: {text_color} size: {font_size}")
|
301 |
# Calculate text size using Pango
|
302 |
# Create a temporary surface to calculate text size
|
utils/lora_details.py
CHANGED
@@ -21,7 +21,7 @@ def upd_prompt_notes(model_textbox_value):
|
|
21 |
notes = item['notes']
|
22 |
break
|
23 |
else:
|
24 |
-
notes = "Enter Prompt description of your image"
|
25 |
return gr.update(value=notes)
|
26 |
|
27 |
def get_trigger_words(model_textbox_value):
|
@@ -57,3 +57,48 @@ def upd_trigger_words(model_textbox_value):
|
|
57 |
"""
|
58 |
trigger_words = get_trigger_words(model_textbox_value)
|
59 |
return gr.update(value=trigger_words)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
notes = item['notes']
|
22 |
break
|
23 |
else:
|
24 |
+
notes = "Enter Prompt description of your image, \nusing models without LoRa may take a 30 minutes."
|
25 |
return gr.update(value=notes)
|
26 |
|
27 |
def get_trigger_words(model_textbox_value):
|
|
|
57 |
"""
|
58 |
trigger_words = get_trigger_words(model_textbox_value)
|
59 |
return gr.update(value=trigger_words)
|
60 |
+
|
61 |
+
def approximate_token_count(prompt):
|
62 |
+
"""
|
63 |
+
Approximates the number of tokens in a prompt based on word count.
|
64 |
+
|
65 |
+
Parameters:
|
66 |
+
prompt (str): The text prompt.
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
int: The approximate number of tokens.
|
70 |
+
"""
|
71 |
+
words = prompt.split()
|
72 |
+
# Average tokens per word (can vary based on language and model)
|
73 |
+
tokens_per_word = 1.3
|
74 |
+
return int(len(words) * tokens_per_word)
|
75 |
+
|
76 |
+
def split_prompt_by_tokens(prompt, token_number):
|
77 |
+
words = prompt.split()
|
78 |
+
# Average tokens per word (can vary based on language and model)
|
79 |
+
tokens_per_word = 1.3
|
80 |
+
return ' '.join(words[:int(tokens_per_word * token_number)]), ' '.join(words[int(tokens_per_word * token_number):])
|
81 |
+
|
82 |
+
# Split prompt precisely by token count
|
83 |
+
import tiktoken
|
84 |
+
|
85 |
+
def split_prompt_precisely(prompt, max_tokens=77, model="gpt-3.5-turbo"):
|
86 |
+
try:
|
87 |
+
encoding = tiktoken.encoding_for_model(model)
|
88 |
+
except KeyError:
|
89 |
+
encoding = tiktoken.get_encoding("cl100k_base")
|
90 |
+
|
91 |
+
tokens = encoding.encode(prompt)
|
92 |
+
|
93 |
+
if len(tokens) <= max_tokens:
|
94 |
+
return prompt, ""
|
95 |
+
|
96 |
+
# Find the split point
|
97 |
+
split_point = max_tokens
|
98 |
+
split_tokens = tokens[:split_point]
|
99 |
+
remaining_tokens = tokens[split_point:]
|
100 |
+
|
101 |
+
split_prompt = encoding.decode(split_tokens)
|
102 |
+
remaining_prompt = encoding.decode(remaining_tokens)
|
103 |
+
|
104 |
+
return split_prompt, remaining_prompt
|
utils/version_info.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# utils/version_info.py
|
2 |
+
|
3 |
+
import subprocess
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import sys
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
git = os.environ.get('GIT', "git")
|
10 |
+
|
11 |
+
def commit_hash():
|
12 |
+
try:
|
13 |
+
return subprocess.check_output([git, "rev-parse", "HEAD"], shell=False, encoding='utf8').strip()
|
14 |
+
except Exception:
|
15 |
+
return "<none>"
|
16 |
+
|
17 |
+
def get_xformers_version():
|
18 |
+
try:
|
19 |
+
import xformers
|
20 |
+
return xformers.__version__
|
21 |
+
except Exception:
|
22 |
+
return "<none>"
|
23 |
+
def get_transformers_version():
|
24 |
+
try:
|
25 |
+
import transformers
|
26 |
+
return transformers.__version__
|
27 |
+
except Exception:
|
28 |
+
return "<none>"
|
29 |
+
|
30 |
+
def get_accelerate_version():
|
31 |
+
try:
|
32 |
+
import accelerate
|
33 |
+
return accelerate.__version__
|
34 |
+
except Exception:
|
35 |
+
return "<none>"
|
36 |
+
def get_safetensors_version():
|
37 |
+
try:
|
38 |
+
import safetensors
|
39 |
+
return safetensors.__version__
|
40 |
+
except Exception:
|
41 |
+
return "<none>"
|
42 |
+
def get_diffusers_version():
|
43 |
+
try:
|
44 |
+
import diffusers
|
45 |
+
return diffusers.__version__
|
46 |
+
except Exception:
|
47 |
+
return "<none>"
|
48 |
+
|
49 |
+
def get_torch_info():
|
50 |
+
try:
|
51 |
+
return [torch.__version__, f"CUDA Version:{torch.version.cuda}", f"Available:{torch.cuda.is_available()}", f"flash attention enabled: {torch.backends.cuda.flash_sdp_enabled()}", f"Capabilities: {torch.cuda.get_device_capability(0)}", f"Device Name: {torch.cuda.get_device_name(0)}"]
|
52 |
+
except Exception:
|
53 |
+
return "<none>"
|
54 |
+
|
55 |
+
def versions_html():
|
56 |
+
python_version = ".".join([str(x) for x in sys.version_info[0:3]])
|
57 |
+
commit = commit_hash()
|
58 |
+
|
59 |
+
# Define the Toggle Dark Mode link with JavaScript
|
60 |
+
toggle_dark_link = '''
|
61 |
+
<a href="#" onclick="document.body.classList.toggle('dark'); return false;" style="cursor: pointer; text-decoration: underline; color: #1a0dab;">
|
62 |
+
Toggle Dark Mode
|
63 |
+
</a>
|
64 |
+
'''
|
65 |
+
|
66 |
+
# version: <a href="https://github.com/Oncorporation/audiocraft/commit/{"" if commit == "<none>" else commit}" target="_blank">{"click" if commit == "<none>" else commit}</a>
|
67 |
+
return f"""
|
68 |
+
version: <a href="https://github.com/Oncorporation/audiocraft/commit/{"" if commit == "<none>" else commit}" target="_blank">{"click" if commit == "<none>" else commit}</a>
|
69 |
+
 • 
|
70 |
+
python: <span title="{sys.version}">{python_version}</span>
|
71 |
+
 • 
|
72 |
+
torch: {getattr(torch, '__long_version__',torch.__version__)}
|
73 |
+
 • 
|
74 |
+
diffusers: {get_diffusers_version()}
|
75 |
+
 • 
|
76 |
+
transformers: {get_transformers_version()}
|
77 |
+
 • 
|
78 |
+
gradio: {gr.__version__}
|
79 |
+
 • 
|
80 |
+
{toggle_dark_link}
|
81 |
+
"""
|