Spaces:
Running
on
T4
Running
on
T4
File size: 22,354 Bytes
5238467 9138f15 5238467 20a0fad 5238467 20a0fad 5238467 20a0fad 5238467 20a0fad 5238467 9138f15 5238467 20a0fad 5238467 9138f15 aef7fad 9138f15 32b0714 23fe483 9138f15 5238467 20a0fad 5238467 1dda6b6 5238467 20a0fad 5238467 20a0fad 5238467 1dda6b6 5238467 20a0fad 5238467 1dda6b6 b76a81b 1dda6b6 b76a81b 1dda6b6 b76a81b 1dda6b6 5238467 20a0fad 5238467 20a0fad 5238467 20a0fad 5238467 20a0fad 5238467 de8ae12 a16c003 de8ae12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Main model for using MusicGen. This will combine all the required components
and provide easy access to the generation API.
"""
import os
import typing as tp
import torch
from .encodec import CompressionModel
from .lm import LMModel
from .builders import get_debug_compression_model, get_debug_lm_model
from .loaders import load_compression_model, load_lm_model, HF_MODEL_CHECKPOINTS_MAP
from ..data.audio_utils import convert_audio
from ..modules.conditioners import ConditioningAttributes, WavCondition
from ..utils.autocast import TorchAutocast
MelodyList = tp.List[tp.Optional[torch.Tensor]]
MelodyType = tp.Union[torch.Tensor, MelodyList]
class MusicGen:
"""MusicGen main model with convenient generation API.
Args:
name (str): name of the model.
compression_model (CompressionModel): Compression model
used to map audio to invertible discrete representations.
lm (LMModel): Language model over discrete representations.
"""
def __init__(self, name: str, compression_model: CompressionModel, lm: LMModel, max_duration: float = 30):
self.name = name
self.compression_model = compression_model
self.lm = lm
self.max_duration = max_duration
self.duration = 15.0 # default duration
self.device = next(iter(lm.parameters())).device
self.generation_params: dict = {}
self.set_generation_params(duration=self.duration) # 15 seconds by default
self._progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None
if self.device.type == 'cpu':
self.autocast = TorchAutocast(enabled=False)
else:
self.autocast = TorchAutocast(
enabled=True, device_type=self.device.type, dtype=torch.float16)
@property
def frame_rate(self) -> int:
"""Roughly the number of AR steps per seconds."""
return self.compression_model.frame_rate
@property
def sample_rate(self) -> int:
"""Sample rate of the generated audio."""
return self.compression_model.sample_rate
@property
def audio_channels(self) -> int:
"""Audio channels of the generated audio."""
return self.compression_model.channels
@staticmethod
def get_pretrained(name: str = 'melody', device=None):
"""Return pretrained model, we provide four models:
- small (300M), text to music, # see: https://huggingface.co/facebook/musicgen-small
- medium (1.5B), text to music, # see: https://huggingface.co/facebook/musicgen-medium
- melody (1.5B) text to music and text+melody to music, # see: https://huggingface.co/facebook/musicgen-melody
- large (3.3B), text to music, # see: https://huggingface.co/facebook/musicgen-large
"""
if device is None:
if torch.cuda.device_count():
device = 'cuda'
else:
device = 'cpu'
if name == 'debug':
# used only for unit tests
compression_model = get_debug_compression_model(device)
lm = get_debug_lm_model(device)
return MusicGen(name, compression_model, lm)
if name not in HF_MODEL_CHECKPOINTS_MAP:
if not os.path.isfile(name) and not os.path.isdir(name):
raise ValueError(
f"{name} is not a valid checkpoint name. "
f"Choose one of {', '.join(HF_MODEL_CHECKPOINTS_MAP.keys())}"
)
cache_dir = os.environ.get('MUSICGEN_ROOT', None)
compression_model = load_compression_model(name, device=device, cache_dir=cache_dir)
lm = load_lm_model(name, device=device, cache_dir=cache_dir)
if name == 'melody':
lm.condition_provider.conditioners['self_wav'].match_len_on_eval = True
return MusicGen(name, compression_model, lm)
def set_generation_params(self, use_sampling: bool = True, top_k: int = 250,
top_p: float = 0.0, temperature: float = 1.0,
duration: float = 30.0, cfg_coef: float = 3.0,
two_step_cfg: bool = False, extend_stride: float = 18, rep_penalty: float = None):
"""Set the generation parameters for MusicGen.
Args:
use_sampling (bool, optional): Use sampling if True, else do argmax decoding. Defaults to True.
top_k (int, optional): top_k used for sampling. Defaults to 250.
top_p (float, optional): top_p used for sampling, when set to 0 top_k is used. Defaults to 0.0.
temperature (float, optional): Softmax temperature parameter. Defaults to 1.0.
duration (float, optional): Duration of the generated waveform. Defaults to 30.0.
cfg_coef (float, optional): Coefficient used for classifier free guidance. Defaults to 3.0.
two_step_cfg (bool, optional): If True, performs 2 forward for Classifier Free Guidance,
instead of batching together the two. This has some impact on how things
are padded but seems to have little impact in practice.
rep_penalty (float, optional): If set, use repetition penalty during generation. Not Implemented.
"""
assert extend_stride < self.max_duration, "Cannot stride by more than max generation duration."
self.extend_stride = extend_stride
self.duration = duration
self.generation_params = {
#'max_gen_len': int(duration * self.frame_rate),
'use_sampling': use_sampling,
'temp': temperature,
'top_k': top_k,
'top_p': top_p,
'cfg_coef': cfg_coef,
'two_step_cfg': two_step_cfg,
}
def set_custom_progress_callback(self, progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None):
"""Override the default progress callback."""
self._progress_callback = progress_callback
def generate_unconditional(self, num_samples: int, progress: bool = False) -> torch.Tensor:
"""Generate samples in an unconditional manner.
Args:
num_samples (int): Number of samples to be generated.
progress (bool, optional): Flag to display progress of the generation process. Defaults to False.
"""
descriptions: tp.List[tp.Optional[str]] = [None] * num_samples
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions, None)
return self._generate_tokens(attributes, prompt_tokens, progress)
def generate(self, descriptions: tp.List[str], progress: bool = False) -> torch.Tensor:
"""Generate samples conditioned on text.
Args:
descriptions (tp.List[str]): A list of strings used as text conditioning.
progress (bool, optional): Flag to display progress of the generation process. Defaults to False.
"""
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions, None)
assert prompt_tokens is None
return self._generate_tokens(attributes, prompt_tokens, progress)
def generate_with_chroma(self, descriptions: tp.List[str], melody_wavs: MelodyType,
melody_sample_rate: int, progress: bool = False) -> torch.Tensor:
"""Generate samples conditioned on text and melody.
Args:
descriptions (tp.List[str]): A list of strings used as text conditioning.
melody_wavs: (torch.Tensor or list of Tensor): A batch of waveforms used as
melody conditioning. Should have shape [B, C, T] with B matching the description length,
C=1 or 2. It can be [C, T] if there is a single description. It can also be
a list of [C, T] tensors.
melody_sample_rate: (int): Sample rate of the melody waveforms.
progress (bool, optional): Flag to display progress of the generation process. Defaults to False.
"""
if isinstance(melody_wavs, torch.Tensor):
if melody_wavs.dim() == 2:
melody_wavs = melody_wavs[None]
if melody_wavs.dim() != 3:
raise ValueError("Melody wavs should have a shape [B, C, T].")
melody_wavs = list(melody_wavs)
else:
for melody in melody_wavs:
if melody is not None:
assert melody.dim() == 2, "One melody in the list has the wrong number of dims."
melody_wavs = [
convert_audio(wav, melody_sample_rate, self.sample_rate, self.audio_channels)
if wav is not None else None
for wav in melody_wavs]
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions=descriptions, prompt=None,
melody_wavs=melody_wavs)
assert prompt_tokens is None
return self._generate_tokens(attributes, prompt_tokens, progress)
def generate_with_all(self, descriptions: tp.List[str], melody_wavs: MelodyType,
sample_rate: int, progress: bool = False, prompt: tp.Optional[torch.Tensor] = None) -> torch.Tensor:
"""Generate samples conditioned on text and melody and audio prompts.
Args:
descriptions (tp.List[str]): A list of strings used as text conditioning.
melody_wavs: (torch.Tensor or list of Tensor): A batch of waveforms used as
melody conditioning. Should have shape [B, C, T] with B matching the description length,
C=1 or 2. It can be [C, T] if there is a single description. It can also be
a list of [C, T] tensors.
sample_rate: (int): Sample rate of the melody waveforms.
progress (bool, optional): Flag to display progress of the generation process. Defaults to False.
prompt (torch.Tensor): A batch of waveforms used for continuation.
Prompt should be [B, C, T], or [C, T] if only one sample is generated.
"""
if isinstance(melody_wavs, torch.Tensor):
if melody_wavs.dim() == 2:
melody_wavs = melody_wavs[None]
if melody_wavs.dim() != 3:
raise ValueError("Melody wavs should have a shape [B, C, T].")
melody_wavs = list(melody_wavs)
else:
for melody in melody_wavs:
if melody is not None:
assert melody.dim() == 2, "One melody in the list has the wrong number of dims."
melody_wavs = [
convert_audio(wav, sample_rate, self.sample_rate, self.audio_channels)
if wav is not None else None
for wav in melody_wavs]
#attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions=descriptions, prompt=None,
# melody_wavs=melody_wavs)
if prompt is not None:
if prompt.dim() == 2:
prompt = prompt[None]
if prompt.dim() != 3:
raise ValueError("prompt should have 3 dimensions: [B, C, T] (C = 1).")
prompt = convert_audio(prompt, sample_rate, self.sample_rate, self.audio_channels)
if descriptions is None:
descriptions = [None] * len(prompt)
#if prompt is not None:
# attributes_gen, prompt_tokens = self._prepare_tokens_and_attributes(descriptions, prompt)
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions=descriptions, prompt=prompt,
melody_wavs=melody_wavs)
if prompt is not None:
assert prompt_tokens is not None
else:
assert prompt_tokens is None
return self._generate_tokens(attributes, prompt_tokens, progress)
def generate_continuation(self, prompt: torch.Tensor, prompt_sample_rate: int,
descriptions: tp.Optional[tp.List[tp.Optional[str]]] = None,
progress: bool = False) -> torch.Tensor:
"""Generate samples conditioned on audio prompts.
Args:
prompt (torch.Tensor): A batch of waveforms used for continuation.
Prompt should be [B, C, T], or [C, T] if only one sample is generated.
prompt_sample_rate (int): Sampling rate of the given audio waveforms.
descriptions (tp.List[str], optional): A list of strings used as text conditioning. Defaults to None.
progress (bool, optional): Flag to display progress of the generation process. Defaults to False.
"""
if prompt.dim() == 2:
prompt = prompt[None]
if prompt.dim() != 3:
raise ValueError("prompt should have 3 dimensions: [B, C, T] (C = 1).")
prompt = convert_audio(prompt, prompt_sample_rate, self.sample_rate, self.audio_channels)
if descriptions is None:
descriptions = [None] * len(prompt)
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions, prompt)
assert prompt_tokens is not None
return self._generate_tokens(attributes, prompt_tokens, progress)
@torch.no_grad()
def _prepare_tokens_and_attributes(
self,
descriptions: tp.Sequence[tp.Optional[str]],
prompt: tp.Optional[torch.Tensor],
melody_wavs: tp.Optional[MelodyList] = None,
) -> tp.Tuple[tp.List[ConditioningAttributes], tp.Optional[torch.Tensor]]:
"""Prepare model inputs.
Args:
descriptions (tp.List[str]): A list of strings used as text conditioning.
prompt (torch.Tensor): A batch of waveforms used for continuation.
melody_wavs (tp.Optional[torch.Tensor], optional): A batch of waveforms
used as melody conditioning. Defaults to None.
"""
attributes = [
ConditioningAttributes(text={'description': description})
for description in descriptions]
if melody_wavs is None:
for attr in attributes:
attr.wav['self_wav'] = WavCondition(
torch.zeros((1, 1), device=self.device),
torch.tensor([0], device=self.device),
path='null_wav') # type: ignore
else:
if self.name != "melody":
raise RuntimeError("This model doesn't support melody conditioning. "
"Use the `melody` model.")
assert len(melody_wavs) == len(descriptions), \
f"number of melody wavs must match number of descriptions! " \
f"got melody len={len(melody_wavs)}, and descriptions len={len(descriptions)}"
for attr, melody in zip(attributes, melody_wavs):
if melody is None:
attr.wav['self_wav'] = WavCondition(
torch.zeros((1, 1), device=self.device),
torch.tensor([0], device=self.device),
path='null_wav') # type: ignore
else:
attr.wav['self_wav'] = WavCondition(
melody.to(device=self.device),
torch.tensor([melody.shape[-1]], device=self.device))
if prompt is not None:
if descriptions is not None:
assert len(descriptions) == len(prompt), "Prompt and nb. descriptions doesn't match"
prompt = prompt.to(self.device)
prompt_tokens, scale = self.compression_model.encode(prompt)
assert scale is None
else:
prompt_tokens = None
return attributes, prompt_tokens
def _generate_tokens(self, attributes: tp.List[ConditioningAttributes],
prompt_tokens: tp.Optional[torch.Tensor], progress: bool = False) -> torch.Tensor:
"""Generate discrete audio tokens given audio prompt and/or conditions.
Args:
attributes (tp.List[ConditioningAttributes]): Conditions used for generation (text/melody).
prompt_tokens (tp.Optional[torch.Tensor]): Audio prompt used for continuation.
progress (bool, optional): Flag to display progress of the generation process. Defaults to False.
Returns:
torch.Tensor: Generated audio, of shape [B, C, T], T is defined by the generation params.
"""
total_gen_len = int(self.duration * self.frame_rate)
max_prompt_len = int(min(self.duration, self.max_duration) * self.frame_rate)
current_gen_offset: int = 0
def _progress_callback(generated_tokens: int, tokens_to_generate: int):
generated_tokens += current_gen_offset
if self._progress_callback is not None:
# Note that total_gen_len might be quite wrong depending on the
# codebook pattern used, but with delay it is almost accurate.
self._progress_callback(generated_tokens, total_gen_len)
else:
print(f'{generated_tokens: 6d} / {total_gen_len: 6d}', end='\r')
if prompt_tokens is not None:
assert max_prompt_len >= prompt_tokens.shape[-1], \
"Prompt is longer than audio to generate"
callback = None
if progress:
callback = _progress_callback
if self.duration <= self.max_duration:
# generate by sampling from LM, simple case.
with self.autocast:
gen_tokens = self.lm.generate(
prompt_tokens, attributes,
callback=callback, max_gen_len=total_gen_len, **self.generation_params)
else:
# now this gets a bit messier, we need to handle prompts,
# melody conditioning etc.
ref_wavs = [attr.wav['self_wav'] for attr in attributes]
all_tokens = []
if prompt_tokens is None:
prompt_length = 0
else:
all_tokens.append(prompt_tokens)
prompt_length = prompt_tokens.shape[-1]
stride_tokens = int(self.frame_rate * self.extend_stride)
while current_gen_offset + prompt_length < total_gen_len:
time_offset = current_gen_offset / self.frame_rate
chunk_duration = min(self.duration - time_offset, self.max_duration)
max_gen_len = int(chunk_duration * self.frame_rate)
for attr, ref_wav in zip(attributes, ref_wavs):
wav_length = ref_wav.length.item()
if wav_length == 0:
continue
# We will extend the wav periodically if it not long enough.
# we have to do it here rather than in conditioners.py as otherwise
# we wouldn't have the full wav.
initial_position = int(time_offset * self.sample_rate)
wav_target_length = int(self.max_duration * self.sample_rate)
print(initial_position / self.sample_rate, wav_target_length / self.sample_rate)
positions = torch.arange(initial_position,
initial_position + wav_target_length, device=self.device)
attr.wav['self_wav'] = WavCondition(
ref_wav[0][:, positions % wav_length],
torch.full_like(ref_wav[1], wav_target_length))
with self.autocast:
gen_tokens = self.lm.generate(
prompt_tokens, attributes,
callback=callback, max_gen_len=max_gen_len, **self.generation_params)
if prompt_tokens is None:
all_tokens.append(gen_tokens)
else:
all_tokens.append(gen_tokens[:, :, prompt_tokens.shape[-1]:])
prompt_tokens = gen_tokens[:, :, stride_tokens:]
prompt_length = prompt_tokens.shape[-1]
current_gen_offset += stride_tokens
gen_tokens = torch.cat(all_tokens, dim=-1)
# generate audio
assert gen_tokens.dim() == 3
with torch.no_grad():
gen_audio = self.compression_model.decode(gen_tokens, None)
return gen_audio
#def _generate_tokens(self, attributes: tp.List[ConditioningAttributes],
# prompt_tokens: tp.Optional[torch.Tensor], progress: bool = False) -> torch.Tensor:
# """Generate discrete audio tokens given audio prompt and/or conditions.
# Args:
# attributes (tp.List[ConditioningAttributes]): Conditions used for generation (text/melody).
# prompt_tokens (tp.Optional[torch.Tensor]): Audio prompt used for continuation.
# progress (bool, optional): Flag to display progress of the generation process. Defaults to False.
# Returns:
# torch.Tensor: Generated audio, of shape [B, C, T], T is defined by the generation params.
# """
# def _progress_callback(generated_tokens: int, tokens_to_generate: int):
# print(f'{generated_tokens: 6d} / {tokens_to_generate: 6d}', end='\r')
# if prompt_tokens is not None:
# assert self.generation_params['max_gen_len'] > prompt_tokens.shape[-1], \
# "Prompt is longer than audio to generate"
# callback = None
# if progress:
# callback = _progress_callback
# # generate by sampling from LM
# with self.autocast:
# gen_tokens = self.lm.generate(prompt_tokens, attributes, callback=callback, **self.generation_params)
# # generate audio
# assert gen_tokens.dim() == 3
# with torch.no_grad():
# gen_audio = self.compression_model.decode(gen_tokens, None)
# return gen_audio
def to(self, device: str):
self.compression_model.to(device)
self.lm.to(device)
return self |