Spaces:
Running
on
T4
Running
on
T4
File size: 11,425 Bytes
5238467 23fe483 5238467 23fe483 5238467 23fe483 5238467 23fe483 5238467 23fe483 5238467 23fe483 5238467 d7ef5a5 b76a81b d7ef5a5 b76a81b d7ef5a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import sys
import typing as tp
import julius
import torch
import torchaudio
def convert_audio_channels(wav: torch.Tensor, channels: int = 2) -> torch.Tensor:
"""Convert audio to the given number of channels.
Args:
wav (torch.Tensor): Audio wave of shape [B, C, T].
channels (int): Expected number of channels as output.
Returns:
torch.Tensor: Downmixed or unchanged audio wave [B, C, T].
"""
*shape, src_channels, length = wav.shape
if src_channels == channels:
pass
elif channels == 1:
# Case 1:
# The caller asked 1-channel audio, and the stream has multiple
# channels, downmix all channels.
wav = wav.mean(dim=-2, keepdim=True)
elif src_channels == 1:
# Case 2:
# The caller asked for multiple channels, but the input file has
# a single channel, replicate the audio over all channels.
wav = wav.expand(*shape, channels, length)
elif src_channels >= channels:
# Case 3:
# The caller asked for multiple channels, and the input file has
# more channels than requested. In that case return the first channels.
wav = wav[..., :channels, :]
else:
# Case 4: What is a reasonable choice here?
raise ValueError('The audio file has less channels than requested but is not mono.')
return wav
def convert_audio(wav: torch.Tensor, from_rate: float,
to_rate: float, to_channels: int) -> torch.Tensor:
"""Convert audio to new sample rate and number of audio channels.
"""
wav = julius.resample_frac(wav, int(from_rate), int(to_rate))
wav = convert_audio_channels(wav, to_channels)
return wav
def normalize_loudness(wav: torch.Tensor, sample_rate: int, loudness_headroom_db: float = 14,
loudness_compressor: bool = False, energy_floor: float = 2e-3):
"""Normalize an input signal to a user loudness in dB LKFS.
Audio loudness is defined according to the ITU-R BS.1770-4 recommendation.
Args:
wav (torch.Tensor): Input multichannel audio data.
sample_rate (int): Sample rate.
loudness_headroom_db (float): Target loudness of the output in dB LUFS.
loudness_compressor (bool): Uses tanh for soft clipping.
energy_floor (float): anything below that RMS level will not be rescaled.
Returns:
output (torch.Tensor): Loudness normalized output data.
"""
energy = wav.pow(2).mean().sqrt().item()
if energy < energy_floor:
return wav
transform = torchaudio.transforms.Loudness(sample_rate)
input_loudness_db = transform(wav).item()
# calculate the gain needed to scale to the desired loudness level
delta_loudness = -loudness_headroom_db - input_loudness_db
gain = 10.0 ** (delta_loudness / 20.0)
output = gain * wav
if loudness_compressor:
output = torch.tanh(output)
assert output.isfinite().all(), (input_loudness_db, wav.pow(2).mean().sqrt())
return output
def _clip_wav(wav: torch.Tensor, log_clipping: bool = False, stem_name: tp.Optional[str] = None) -> None:
"""Utility function to clip the audio with logging if specified."""
max_scale = wav.abs().max()
if log_clipping and max_scale > 1:
clamp_prob = (wav.abs() > 1).float().mean().item()
print(f"CLIPPING {stem_name or ''} happening with proba (a bit of clipping is okay):",
clamp_prob, "maximum scale: ", max_scale.item(), file=sys.stderr)
wav.clamp_(-1, 1)
def normalize_audio(wav: torch.Tensor, normalize: bool = True,
strategy: str = 'peak', peak_clip_headroom_db: float = 1,
rms_headroom_db: float = 18, loudness_headroom_db: float = 14,
loudness_compressor: bool = False, log_clipping: bool = False,
sample_rate: tp.Optional[int] = None,
stem_name: tp.Optional[str] = None) -> torch.Tensor:
"""Normalize the audio according to the prescribed strategy (see after).
Args:
wav (torch.Tensor): Audio data.
normalize (bool): if `True` (default), normalizes according to the prescribed
strategy (see after). If `False`, the strategy is only used in case clipping
would happen.
strategy (str): Can be either 'clip', 'peak', or 'rms'. Default is 'peak',
i.e. audio is normalized by its largest value. RMS normalizes by root-mean-square
with extra headroom to avoid clipping. 'clip' just clips.
peak_clip_headroom_db (float): Headroom in dB when doing 'peak' or 'clip' strategy.
rms_headroom_db (float): Headroom in dB when doing 'rms' strategy. This must be much larger
than the `peak_clip` one to avoid further clipping.
loudness_headroom_db (float): Target loudness for loudness normalization.
loudness_compressor (bool): If True, uses tanh based soft clipping.
log_clipping (bool): If True, basic logging on stderr when clipping still
occurs despite strategy (only for 'rms').
sample_rate (int): Sample rate for the audio data (required for loudness).
stem_name (Optional[str]): Stem name for clipping logging.
Returns:
torch.Tensor: Normalized audio.
"""
scale_peak = 10 ** (-peak_clip_headroom_db / 20)
scale_rms = 10 ** (-rms_headroom_db / 20)
if strategy == 'peak':
rescaling = (scale_peak / wav.abs().max())
if normalize or rescaling < 1:
wav = wav * rescaling
elif strategy == 'clip':
wav = wav.clamp(-scale_peak, scale_peak)
elif strategy == 'rms':
mono = wav.mean(dim=0)
rescaling = scale_rms / mono.pow(2).mean().sqrt()
if normalize or rescaling < 1:
wav = wav * rescaling
_clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name)
elif strategy == 'loudness':
assert sample_rate is not None, "Loudness normalization requires sample rate."
wav = normalize_loudness(wav, sample_rate, loudness_headroom_db, loudness_compressor)
_clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name)
else:
assert wav.abs().max() < 1
assert strategy == '' or strategy == 'none', f"Unexpected strategy: '{strategy}'"
return wav
def f32_pcm(wav: torch.Tensor) -> torch.Tensor:
"""Convert audio to float 32 bits PCM format.
"""
if wav.dtype.is_floating_point:
return wav
else:
assert wav.dtype == torch.int16
return wav.float() / 2**15
def i16_pcm(wav: torch.Tensor) -> torch.Tensor:
"""Convert audio to int 16 bits PCM format.
..Warning:: There exist many formula for doing this convertion. None are perfect
due to the asymetry of the int16 range. One either have possible clipping, DC offset,
or inconsistancies with f32_pcm. If the given wav doesn't have enough headroom,
it is possible that `i16_pcm(f32_pcm)) != Identity`.
"""
if wav.dtype.is_floating_point:
assert wav.abs().max() <= 1
candidate = (wav * 2 ** 15).round()
if candidate.max() >= 2 ** 15: # clipping would occur
candidate = (wav * (2 ** 15 - 1)).round()
return candidate.short()
else:
assert wav.dtype == torch.int16
return wav
def apply_tafade(audio: torch.Tensor, sample_rate, duration=3.0, out=True, start=True, shape: str = "linear") -> torch.Tensor:
"""
Apply fade-in and/or fade-out effects to the audio tensor.
Args:
audio (torch.Tensor): The input audio tensor of shape (C, L).
sample_rate (int): The sample rate of the audio.
duration (float, optional): The duration of the fade in seconds. Defaults to 3.0.
out (bool, optional): Determines whether to apply fade-in (False) or fade-out (True) effect. Defaults to True.
start (bool, optional): Determines whether the fade is applied to the beginning (True) or end (False) of the audio. Defaults to True.
shape (str, optional): The shape of the fade. Must be one of: "quarter_sine", "half_sine", "linear", "logarithmic", "exponential". Defaults to "linear".
Returns:
torch.Tensor: The audio tensor with the fade effect applied.
"""
fade_samples = int(sample_rate * duration) # Number of samples for the fade duration
# Create the fade transform
fade_transform = torchaudio.transforms.Fade(fade_in_len=fade_samples, fade_out_len=fade_samples, fade_shape=shape)
if out:
fade_transform.fade_out_len = fade_samples
fade_transform.fade_out_shape = shape
# Select the portion of the audio to apply the fade
if start:
audio_fade_section = audio[:, :fade_samples]
else:
audio_fade_section = audio[:, -fade_samples:]
# Apply the fade transform to the audio section
audio_faded = fade_transform(audio)
# Replace the selected portion of the audio with the faded section
if start:
audio_faded[:, :fade_samples] = audio_fade_section
else:
audio_faded[:, -fade_samples:] = audio_fade_section
return audio_faded
def apply_fade(audio: torch.Tensor, sample_rate, duration=3.0, out=True, start=True, curve_start:float=0.0, curve_end:float=1.0, current_device:str="cpu") -> torch.Tensor:
"""
Apply fade-in and/or fade-out effects to the audio tensor.
Args:
audio (torch.Tensor): The input audio tensor of shape (C, L).
sample_rate (int): The sample rate of the audio.
duration (float, optional): The duration of the fade in seconds. Defaults to 3.0.
out (bool, optional): Determines whether to apply fade-in (False) or fade-out (True) effect. Defaults to True.
start (bool, optional): Determines whether the fade is applied to the beginning (True) or end (False) of the audio. Defaults to True.
curve_start (float, optional): The starting amplitude of the fade curve. Defaults to 0.0.
curve_end (float, optional): The ending amplitude of the fade curve. Defaults to 1.0.
current_device (str, optional): The device on which the fade curve tensor should be created. Defaults to "cpu".
Returns:
torch.Tensor: The audio tensor with the fade effect applied.
"""
fade_samples = int(sample_rate * duration) # Number of samples for the fade duration
fade_curve = torch.linspace(curve_start, curve_end, fade_samples, device=current_device) # Generate linear fade curve
if out:
fade_curve = fade_curve.flip(0) # Reverse the fade curve for fade out
# Select the portion of the audio to apply the fade
if start:
audio_fade_section = audio[:, :fade_samples]
else:
audio_fade_section = audio[:, -fade_samples:]
# Apply the fade curve to the audio section
audio_faded = audio.clone()
audio_faded[:, :fade_samples] *= fade_curve.unsqueeze(0)
audio_faded[:, -fade_samples:] *= fade_curve.unsqueeze(0)
# Replace the selected portion of the audio with the faded section
if start:
audio_faded[:, :fade_samples] = audio_fade_section
else:
audio_faded[:, -fade_samples:] = audio_fade_section
return audio_faded |