Spaces:
Running
on
T4
Running
on
T4
File size: 15,257 Bytes
907a484 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import torch
import typing as tp
from itertools import chain
from pathlib import Path
from torch import nn
from .conditioners import (ConditioningAttributes, BaseConditioner, ConditionType,
ConditioningProvider, JascoCondConst,
WaveformConditioner, WavCondition, SymbolicCondition)
from ..data.audio import audio_read
from ..data.audio_utils import convert_audio
from ..utils.autocast import TorchAutocast
from ..utils.cache import EmbeddingCache
class MelodyConditioner(BaseConditioner):
"""
A conditioner that handles melody conditioning from pre-computed salience matrix.
Attributes:
card (int): The cardinality of the melody matrix.
out_dim (int): The dimensionality of the output projection.
device (Union[torch.device, str]): The device on which the embeddings are stored.
"""
def __init__(self, card: int, out_dim: int, device: tp.Union[torch.device, str] = 'cpu', **kwargs):
super().__init__(dim=card, output_dim=out_dim)
self.device = device
def tokenize(self, x: SymbolicCondition) -> SymbolicCondition:
return SymbolicCondition(melody=x.melody.to(self.device)) # type: ignore
def forward(self, x: SymbolicCondition) -> ConditionType:
embeds = self.output_proj(x.melody.permute(0, 2, 1)) # type: ignore
mask = torch.ones_like(embeds[..., 0])
return embeds, mask
class ChordsEmbConditioner(BaseConditioner):
"""
A conditioner that embeds chord symbols into a continuous vector space.
Attributes:
card (int): The cardinality of the chord vocabulary.
out_dim (int): The dimensionality of the output embeddings.
device (Union[torch.device, str]): The device on which the embeddings are stored.
"""
def __init__(self, card: int, out_dim: int, device: tp.Union[torch.device, str] = 'cpu', **kwargs):
vocab_size = card + 1 # card + 1 - for null chord used during dropout
super().__init__(dim=vocab_size, output_dim=-1) # out_dim=-1 to avoid another projection
self.emb = nn.Embedding(vocab_size, out_dim, device=device)
self.device = device
def tokenize(self, x: SymbolicCondition) -> SymbolicCondition:
return SymbolicCondition(frame_chords=x.frame_chords.to(self.device)) # type: ignore
def forward(self, x: SymbolicCondition) -> ConditionType:
embeds = self.emb(x.frame_chords)
mask = torch.ones_like(embeds[..., 0])
return embeds, mask
class DrumsConditioner(WaveformConditioner):
def __init__(self, out_dim: int, sample_rate: int, blurring_factor: int = 3,
cache_path: tp.Optional[tp.Union[str, Path]] = None,
compression_model_latent_dim: int = 128,
compression_model_framerate: float = 50,
segment_duration: float = 10.0,
device: tp.Union[torch.device, str] = 'cpu',
**kwargs):
"""Drum condition conditioner
Args:
out_dim (int): _description_
sample_rate (int): _description_
blurring_factor (int, optional): _description_. Defaults to 3.
cache_path (tp.Optional[tp.Union[str, Path]], optional): path to precomputed cache. Defaults to None.
compression_model_latent_dim (int, optional): latent dimensino. Defaults to 128.
compression_model_framerate (float, optional): frame rate of the representation model. Defaults to 50.
segment_duration (float, optional): duration in sec for each audio segment. Defaults to 10.0.
device (tp.Union[torch.device, str], optional): device. Defaults to 'cpu'.
"""
from demucs import pretrained
self.sample_rate = sample_rate
self.__dict__['demucs'] = pretrained.get_model('htdemucs').to(device)
stem_sources: list = self.demucs.sources # type: ignore
self.stem_idx = stem_sources.index('drums')
self.compression_model = None
self.latent_dim = compression_model_latent_dim
super().__init__(dim=self.latent_dim, output_dim=out_dim, device=device)
self.autocast = TorchAutocast(enabled=device != 'cpu', device_type=self.device, dtype=torch.float32)
self._use_masking = False
self.blurring_factor = blurring_factor
self.seq_len = int(segment_duration * compression_model_framerate)
self.cache = None # If you wish to train with EmbeddingCache, call self.create_embedding_cache(cache_path)
def create_embedding_cache(self, cache_path):
if cache_path is not None:
self.cache = EmbeddingCache(Path(cache_path) / 'wav', self.device,
compute_embed_fn=self._calc_coarse_drum_codes_for_cache,
extract_embed_fn=self._load_drum_codes_chunk)
@torch.no_grad()
def _get_drums_stem(self, wav: torch.Tensor, sample_rate: int) -> torch.Tensor:
"""Get parts of the wav that holds the drums, extracting the main stems from the wav."""
from demucs.apply import apply_model
from demucs.audio import convert_audio
with self.autocast:
wav = convert_audio(
wav, sample_rate, self.demucs.samplerate, self.demucs.audio_channels) # type: ignore
stems = apply_model(self.demucs, wav, device=self.device)
drum_stem = stems[:, self.stem_idx] # extract relevant stems for drums conditioning
return convert_audio(drum_stem, self.demucs.samplerate, self.sample_rate, 1) # type: ignore
def _temporal_blur(self, z: torch.Tensor):
# z: (B, T, C)
B, T, C = z.shape
if T % self.blurring_factor != 0:
# pad with reflect for T % self.temporal_blurring on the right in dim=1
pad_val = self.blurring_factor - T % self.blurring_factor
z = torch.nn.functional.pad(z, (0, 0, 0, pad_val), mode='reflect')
z = z.reshape(B, -1, self.blurring_factor, C).sum(dim=2) / self.blurring_factor
z = z.unsqueeze(2).repeat(1, 1, self.blurring_factor, 1).reshape(B, -1, C)
z = z[:, :T]
assert z.shape == (B, T, C)
return z
@torch.no_grad()
def _extract_coarse_drum_codes(self, wav: torch.Tensor, sample_rate: int) -> torch.Tensor:
assert self.compression_model is not None
# stem separation of drums
drums = self._get_drums_stem(wav, sample_rate)
# continuous encoding with compression model
latents = self.compression_model.model.encoder(drums)
# quantization to coarsest codebook
coarsest_quantizer = self.compression_model.model.quantizer.layers[0]
drums = coarsest_quantizer.encode(latents).to(torch.int16)
return drums
@torch.no_grad()
def _calc_coarse_drum_codes_for_cache(self, path: tp.Union[str, Path],
x: WavCondition, idx: int,
max_duration_to_process: float = 600) -> torch.Tensor:
"""Extract blurred drum latents from the whole audio waveform at the given path."""
wav, sr = audio_read(path)
wav = wav[None].to(self.device)
wav = convert_audio(wav, sr, self.sample_rate, to_channels=1)
max_frames_to_process = int(max_duration_to_process * self.sample_rate)
if wav.shape[-1] > max_frames_to_process:
# process very long tracks in chunks
start = 0
codes = []
while start < wav.shape[-1] - 1:
wav_chunk = wav[..., start: start + max_frames_to_process]
codes.append(self._extract_coarse_drum_codes(wav_chunk, self.sample_rate)[0])
start += max_frames_to_process
return torch.cat(codes)
return self._extract_coarse_drum_codes(wav, self.sample_rate)[0]
def _load_drum_codes_chunk(self, full_coarse_drum_codes: torch.Tensor, x: WavCondition, idx: int) -> torch.Tensor:
"""Extract a chunk of coarse drum codes from the full coarse drum codes derived from the full waveform."""
wav_length = x.wav.shape[-1]
seek_time = x.seek_time[idx]
assert seek_time is not None, (
"WavCondition seek_time is required "
"when extracting chunks from pre-computed drum codes.")
assert self.compression_model is not None
frame_rate = self.compression_model.frame_rate
target_length = int(frame_rate * wav_length / self.sample_rate)
target_length = max(target_length, self.seq_len)
index = int(frame_rate * seek_time)
out = full_coarse_drum_codes[index: index + target_length]
# pad
out = torch.cat((out, torch.zeros(target_length - out.shape[0], dtype=out.dtype, device=out.device)))
return out.to(self.device)
@torch.no_grad()
def _get_wav_embedding(self, x: WavCondition) -> torch.Tensor:
bs = x.wav.shape[0]
if x.wav.shape[-1] <= 1:
# null condition
return torch.zeros((bs, self.seq_len, self.latent_dim), device=x.wav.device, dtype=x.wav.dtype)
# extract coarse drum codes
no_undefined_paths = all(p is not None for p in x.path)
no_nullified_cond = x.wav.shape[-1] > 1
if self.cache is not None and no_undefined_paths and no_nullified_cond:
paths = [Path(p) for p in x.path if p is not None]
codes = self.cache.get_embed_from_cache(paths, x)
else:
assert all(sr == x.sample_rate[0] for sr in x.sample_rate), "All sample rates in batch should be equal."
codes = self._extract_coarse_drum_codes(x.wav, x.sample_rate[0])
assert self.compression_model is not None
# decode back to the continuous representation of compression model
codes = codes.unsqueeze(1).permute(1, 0, 2) # (B, T) -> (1, B, T)
codes = codes.to(torch.int64)
latents = self.compression_model.model.quantizer.decode(codes)
latents = latents.permute(0, 2, 1) # [B, C, T] -> [B, T, C]
# temporal blurring
return self._temporal_blur(latents)
def tokenize(self, x: WavCondition) -> WavCondition:
"""Apply WavConditioner tokenization and populate cache if needed."""
x = super().tokenize(x)
no_undefined_paths = all(p is not None for p in x.path)
if self.cache is not None and no_undefined_paths:
paths = [Path(p) for p in x.path if p is not None]
self.cache.populate_embed_cache(paths, x)
return x
class JascoConditioningProvider(ConditioningProvider):
"""
A cond-provider that manages and tokenizes various types of conditioning attributes for Jasco models.
Attributes:
chords_card (int): The cardinality of the chord vocabulary.
sequence_length (int): The length of the sequence for padding purposes.
melody_dim (int): The dimensionality of the melody matrix.
"""
def __init__(self, *args,
chords_card: int = 194,
sequence_length: int = 500,
melody_dim: int = 53, **kwargs):
self.null_chord = chords_card
self.sequence_len = sequence_length
self.melody_dim = melody_dim
super().__init__(*args, **kwargs)
def tokenize(self, inputs: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.Any]:
"""Match attributes/wavs with existing conditioners in self, and compute tokenize them accordingly.
This should be called before starting any real GPU work to avoid synchronization points.
This will return a dict matching conditioner names to their arbitrary tokenized representations.
Args:
inputs (list[ConditioningAttributes]): List of ConditioningAttributes objects containing
text and wav conditions.
"""
assert all([isinstance(x, ConditioningAttributes) for x in inputs]), (
"Got unexpected types input for conditioner! should be tp.List[ConditioningAttributes]",
f" but types were {set([type(x) for x in inputs])}"
)
output = {}
text = self._collate_text(inputs)
wavs = self._collate_wavs(inputs)
symbolic = self._collate_symbolic(inputs, self.conditioners.keys())
assert set(text.keys() | wavs.keys() | symbolic.keys()).issubset(set(self.conditioners.keys())), (
f"Got an unexpected attribute! Expected {self.conditioners.keys()}, ",
f"got {text.keys(), wavs.keys(), symbolic.keys()}"
)
for attribute, batch in chain(text.items(), wavs.items(), symbolic.items()):
output[attribute] = self.conditioners[attribute].tokenize(batch)
return output
def _collate_symbolic(self, samples: tp.List[ConditioningAttributes],
conditioner_keys: tp.Set) -> tp.Dict[str, SymbolicCondition]:
output = {}
# collate if symbolic cond exists
if any(x in conditioner_keys for x in JascoCondConst.SYM.value):
for s in samples:
# hydrate with null chord if chords not exist - for inference support
if (s.symbolic == {} or
s.symbolic[JascoCondConst.CRD.value].frame_chords is None or
s.symbolic[JascoCondConst.CRD.value].frame_chords.shape[-1] <= 1): # type: ignore
# no chords conditioning - fill with null chord token
s.symbolic[JascoCondConst.CRD.value] = SymbolicCondition(
frame_chords=torch.ones(self.sequence_len, dtype=torch.int32) * self.null_chord)
if (s.symbolic == {} or
s.symbolic[JascoCondConst.MLD.value].melody is None or
s.symbolic[JascoCondConst.MLD.value].melody.shape[-1] <= 1): # type: ignore
# no chords conditioning - fill with null chord token
s.symbolic[JascoCondConst.MLD.value] = SymbolicCondition(
melody=torch.zeros((self.melody_dim, self.sequence_len)))
if JascoCondConst.CRD.value in conditioner_keys:
# pad to max
max_seq_len = max(
[s.symbolic[JascoCondConst.CRD.value].frame_chords.shape[-1] for s in samples]) # type: ignore
padded_chords = [
torch.cat((x.symbolic[JascoCondConst.CRD.value].frame_chords, # type: ignore
torch.ones(max_seq_len -
x.symbolic[JascoCondConst.CRD.value].frame_chords.shape[-1], # type: ignore
dtype=torch.int32) * self.null_chord))
for x in samples
]
output[JascoCondConst.CRD.value] = SymbolicCondition(frame_chords=torch.stack(padded_chords))
if JascoCondConst.MLD.value in conditioner_keys:
melodies = torch.stack([x.symbolic[JascoCondConst.MLD.value].melody for x in samples]) # type: ignore
output[JascoCondConst.MLD.value] = SymbolicCondition(melody=melodies)
return output
|