Surn's picture
Add Harmony / Drum separation
1028cad
raw
history blame
14.1 kB
from tabnanny import verbose
import torch
import math
from audiocraft.models import MusicGen
import numpy as np
from PIL import Image, ImageDraw, ImageFont, ImageColor
import string
import tempfile
import os
import textwrap
import requests
from io import BytesIO
from huggingface_hub import hf_hub_download
import librosa
INTERRUPTING = False
def separate_audio_segments(audio, segment_duration=30, overlap=1):
sr, audio_data = audio[0], audio[1]
segment_samples = sr * segment_duration
total_samples = max(min((len(audio_data) // segment_samples), 25), 0)
overlap_samples = sr * overlap
segments = []
start_sample = 0
while total_samples >= segment_samples:
# Collect the segment
# the end sample is the start sample plus the segment samples,
# the start sample, after 0, is minus the overlap samples to account for the overlap
end_sample = start_sample + segment_samples
segment = audio_data[start_sample:end_sample]
segments.append((sr, segment))
start_sample += segment_samples - overlap_samples
total_samples -= segment_samples
# Collect the final segment
if total_samples > 0:
segment = audio_data[-segment_samples:]
segments.append((sr, segment))
print(f"separate_audio_segments: {len(segments)} segments")
return segments
def generate_music_segments(text, melody, seed, MODEL, duration:int=10, overlap:int=1, segment_duration:int=30, prompt_index:int=0, harmony_only:bool= False):
# generate audio segments
melody_segments = separate_audio_segments(melody, segment_duration, 0)
# Create lists to store the melody tensors for each segment
melodys = []
output_segments = []
last_chunk = []
text += ", seed=" + str(seed)
prompt_segment = None
# Calculate the total number of segments
total_segments = max(math.ceil(duration / segment_duration),1)
#calculate duration loss from segment overlap
duration_loss = max(total_segments - 1,0) * math.ceil(overlap / 2)
#calc excess duration
excess_duration = segment_duration - (total_segments * segment_duration - duration)
print(f"total Segments to Generate: {total_segments} for {duration} seconds. Each segment is {segment_duration} seconds. Excess {excess_duration} Overlap Loss {duration_loss}")
duration += duration_loss
while excess_duration + duration_loss > segment_duration:
total_segments += 1
#calculate duration loss from segment overlap
duration_loss = max(total_segments - 1,0) * math.ceil(overlap / 2)
#calc excess duration
excess_duration = segment_duration - (total_segments * segment_duration - duration)
print(f"total Segments to Generate: {total_segments} for {duration} seconds. Each segment is {segment_duration} seconds. Excess {excess_duration} Overlap Loss {duration_loss}")
if excess_duration + duration_loss > segment_duration:
duration += duration_loss
# If melody_segments is shorter than total_segments, repeat the segments until the total_segments is reached
if len(melody_segments) < total_segments:
#fix melody_segments
for i in range(total_segments - len(melody_segments)):
segment = melody_segments[i]
melody_segments.append(segment)
print(f"melody_segments: {len(melody_segments)} fixed")
# Iterate over the segments to create list of Meldoy tensors
for segment_idx in range(total_segments):
if INTERRUPTING:
return [], duration
print(f"segment {segment_idx + 1} of {total_segments} \r")
if harmony_only:
# REMOVE PERCUSION FROM MELODY
# Apply HPSS using librosa
verse_harmonic, verse_percussive = librosa.effects.hpss(melody_segments[segment_idx][1])
# Convert the separated components back to torch.Tensor
#harmonic_tensor = torch.from_numpy(verse_harmonic)
#percussive_tensor = torch.from_numpy(verse_percussive)
sr, verse = melody_segments[segment_idx][0], torch.from_numpy(verse_harmonic).to(MODEL.device).float().t().unsqueeze(0)
else:
sr, verse = melody_segments[segment_idx][0], torch.from_numpy(melody_segments[segment_idx][1]).to(MODEL.device).float().t().unsqueeze(0)
print(f"shape:{verse.shape} dim:{verse.dim()}")
if verse.dim() == 2:
verse = verse[None]
verse = verse[..., :int(sr * MODEL.lm.cfg.dataset.segment_duration)]
# Append the segment to the melodys list
melodys.append(verse)
torch.manual_seed(seed)
# If user selects a prompt segment, generate a new prompt segment to use on all segments
#default to the first segment for prompt conditioning
prompt_verse = melodys[0]
if prompt_index > 0:
# Get a prompt segment from the selected verse, normally the first verse
prompt_verse = melodys[prompt_index if prompt_index <= (total_segments - 1) else (total_segments -1)]
# set the prompt segment MODEL generation params
MODEL.set_generation_params(
use_sampling=True,
top_k=MODEL.generation_params["top_k"],
top_p=MODEL.generation_params["top_p"],
temperature=MODEL.generation_params["temp"],
cfg_coef=MODEL.generation_params["cfg_coef"],
duration=segment_duration,
two_step_cfg=False,
rep_penalty=0.5
)
# Generate a new prompt segment. This will be applied to all segments for consistency
print(f"Generating New Prompt Segment: {text} from verse {prompt_index}\r")
prompt_segment = MODEL.generate_with_all(
descriptions=[text],
melody_wavs=prompt_verse,
sample_rate=sr,
progress=False,
prompt=None,
)
for idx, verse in enumerate(melodys):
if INTERRUPTING:
return output_segments, duration
print(f'Segment duration: {segment_duration}, duration: {duration}, overlap: {overlap} Overlap Loss: {duration_loss}')
# Compensate for the length of final segment
if ((idx + 1) == len(melodys)) or (duration < segment_duration):
mod_duration = max(min(duration, segment_duration),1)
print(f'Modify verse length, duration: {duration}, overlap: {overlap} Overlap Loss: {duration_loss} to mod duration: {mod_duration}')
MODEL.set_generation_params(
use_sampling=True,
top_k=MODEL.generation_params["top_k"],
top_p=MODEL.generation_params["top_p"],
temperature=MODEL.generation_params["temp"],
cfg_coef=MODEL.generation_params["cfg_coef"],
duration=mod_duration,
two_step_cfg=False,
rep_penalty=0.5
)
try:
# get last chunk
verse = verse[:, :, -mod_duration*MODEL.sample_rate:]
prompt_segment = prompt_segment[:, :, -mod_duration*MODEL.sample_rate:]
except:
# get first chunk
verse = verse[:, :, :mod_duration*MODEL.sample_rate]
prompt_segment = prompt_segment[:, :, :mod_duration*MODEL.sample_rate]
print(f"Generating New Melody Segment {idx + 1}: {text}\r")
output = MODEL.generate_with_all(
descriptions=[text],
melody_wavs=verse,
sample_rate=sr,
progress=False,
prompt=prompt_segment,
)
# If user selects a prompt segment, use the prompt segment for all segments
# Otherwise, use the previous segment as the prompt
if prompt_index < 0:
prompt_segment = output
# Append the generated output to the list of segments
#output_segments.append(output[:, :segment_duration])
output_segments.append(output)
print(f"output_segments: {len(output_segments)}: shape: {output.shape} dim {output.dim()}")
#track duration
if duration > segment_duration:
duration -= segment_duration
return output_segments, excess_duration
def save_image(image):
"""
Saves a PIL image to a temporary file and returns the file path.
Parameters:
- image: PIL.Image
The PIL image object to be saved.
Returns:
- str or None: The file path where the image was saved,
or None if there was an error saving the image.
"""
temp_dir = tempfile.gettempdir()
temp_file = tempfile.NamedTemporaryFile(suffix=".png", dir=temp_dir, delete=False)
temp_file.close()
file_path = temp_file.name
try:
image.save(file_path)
except Exception as e:
print("Unable to save image:", str(e))
return None
finally:
return file_path
def hex_to_rgba(hex_color):
try:
# Convert hex color to RGBA tuple
rgba = ImageColor.getcolor(hex_color, "RGBA")
except ValueError:
# If the hex color is invalid, default to yellow
rgba = (255,255,0,255)
return rgba
def load_font(font_name, font_size=16):
"""
Load a font using the provided font name and font size.
Parameters:
font_name (str): The name of the font to load. Can be a font name recognized by the system, a URL to download the font file,
a local file path, or a Hugging Face model hub identifier.
font_size (int, optional): The size of the font. Default is 16.
Returns:
ImageFont.FreeTypeFont: The loaded font object.
Notes:
This function attempts to load the font using various methods until a suitable font is found. If the provided font_name
cannot be loaded, it falls back to a default font.
The font_name can be one of the following:
- A font name recognized by the system, which can be loaded using ImageFont.truetype.
- A URL pointing to the font file, which is downloaded using requests and then loaded using ImageFont.truetype.
- A local file path to the font file, which is loaded using ImageFont.truetype.
- A Hugging Face model hub identifier, which downloads the font file from the Hugging Face model hub using hf_hub_download
and then loads it using ImageFont.truetype.
Example:
font = load_font("Arial.ttf", font_size=20)
"""
font = None
if not "http" in font_name:
try:
font = ImageFont.truetype(font_name, font_size)
except (FileNotFoundError, OSError):
print("Font not found. Using Hugging Face download..\n")
if font is None:
try:
font_path = ImageFont.truetype(hf_hub_download(repo_id=os.environ.get('SPACE_ID', ''), filename="assets/" + font_name, repo_type="space"), encoding="UTF-8")
font = ImageFont.truetype(font_path, font_size)
except (FileNotFoundError, OSError):
print("Font not found. Trying to download from local assets folder...\n")
if font is None:
try:
font = ImageFont.truetype("assets/" + font_name, font_size)
except (FileNotFoundError, OSError):
print("Font not found. Trying to download from URL...\n")
if font is None:
try:
req = requests.get(font_name)
font = ImageFont.truetype(BytesIO(req.content), font_size)
except (FileNotFoundError, OSError):
print(f"Font not found: {font_name} Using default font\n")
if font:
print(f"Font loaded {font.getname()}")
else:
font = ImageFont.load_default()
return font
def add_settings_to_image(title: str = "title", description: str = "", width: int = 768, height: int = 512, background_path: str = "", font: str = "arial.ttf", font_color: str = "#ffffff"):
# Create a new RGBA image with the specified dimensions
image = Image.new("RGBA", (width, height), (255, 255, 255, 0))
# If a background image is specified, open it and paste it onto the image
if background_path == "":
background = Image.new("RGBA", (width, height), (255, 255, 255, 255))
else:
background = Image.open(background_path).convert("RGBA")
#Convert font color to RGBA tuple
font_color = hex_to_rgba(font_color)
# Calculate the center coordinates for placing the text
text_x = width // 2
text_y = height // 2
# Draw the title text at the center top
title_font = load_font(font, 26) # Replace with your desired font and size
title_text = '\n'.join(textwrap.wrap(title, width // 12))
title_x, title_y, title_text_width, title_text_height = title_font.getbbox(title_text)
title_x = max(text_x - (title_text_width // 2), title_x, 0)
title_y = text_y - (height // 2) + 10 # 10 pixels padding from the top
title_draw = ImageDraw.Draw(image)
title_draw.multiline_text((title_x, title_y), title, fill=font_color, font=title_font, align="center")
# Draw the description text two lines below the title
description_font = load_font(font, 16) # Replace with your desired font and size
description_text = '\n'.join(textwrap.wrap(description, width // 12))
description_x, description_y, description_text_width, description_text_height = description_font.getbbox(description_text)
description_x = max(text_x - (description_text_width // 2), description_x, 0)
description_y = title_y + title_text_height + 20 # 20 pixels spacing between title and description
description_draw = ImageDraw.Draw(image)
description_draw.multiline_text((description_x, description_y), description_text, fill=font_color, font=description_font, align="center")
# Calculate the offset to center the image on the background
bg_w, bg_h = background.size
offset = ((bg_w - width) // 2, (bg_h - height) // 2)
# Paste the image onto the background
background.paste(image, offset, mask=image)
# Save the image and return the file path
return save_image(background)