Spaces:
Running
on
T4
Running
on
T4
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import sys | |
import typing as tp | |
import julius | |
import torch | |
import torchaudio | |
def convert_audio_channels(wav: torch.Tensor, channels: int = 2) -> torch.Tensor: | |
"""Convert audio to the given number of channels. | |
Args: | |
wav (torch.Tensor): Audio wave of shape [B, C, T]. | |
channels (int): Expected number of channels as output. | |
Returns: | |
torch.Tensor: Downmixed or unchanged audio wave [B, C, T]. | |
""" | |
*shape, src_channels, length = wav.shape | |
if src_channels == channels: | |
pass | |
elif channels == 1: | |
# Case 1: | |
# The caller asked 1-channel audio, and the stream has multiple | |
# channels, downmix all channels. | |
wav = wav.mean(dim=-2, keepdim=True) | |
elif src_channels == 1: | |
# Case 2: | |
# The caller asked for multiple channels, but the input file has | |
# a single channel, replicate the audio over all channels. | |
wav = wav.expand(*shape, channels, length) | |
elif src_channels >= channels: | |
# Case 3: | |
# The caller asked for multiple channels, and the input file has | |
# more channels than requested. In that case return the first channels. | |
wav = wav[..., :channels, :] | |
else: | |
# Case 4: What is a reasonable choice here? | |
raise ValueError('The audio file has less channels than requested but is not mono.') | |
return wav | |
def convert_audio(wav: torch.Tensor, from_rate: float, | |
to_rate: float, to_channels: int) -> torch.Tensor: | |
"""Convert audio to new sample rate and number of audio channels. | |
""" | |
wav = julius.resample_frac(wav, int(from_rate), int(to_rate)) | |
wav = convert_audio_channels(wav, to_channels) | |
return wav | |
def normalize_loudness(wav: torch.Tensor, sample_rate: int, loudness_headroom_db: float = 14, | |
loudness_compressor: bool = False, energy_floor: float = 2e-3): | |
"""Normalize an input signal to a user loudness in dB LKFS. | |
Audio loudness is defined according to the ITU-R BS.1770-4 recommendation. | |
Args: | |
wav (torch.Tensor): Input multichannel audio data. | |
sample_rate (int): Sample rate. | |
loudness_headroom_db (float): Target loudness of the output in dB LUFS. | |
loudness_compressor (bool): Uses tanh for soft clipping. | |
energy_floor (float): anything below that RMS level will not be rescaled. | |
Returns: | |
output (torch.Tensor): Loudness normalized output data. | |
""" | |
energy = wav.pow(2).mean().sqrt().item() | |
if energy < energy_floor: | |
return wav | |
transform = torchaudio.transforms.Loudness(sample_rate) | |
input_loudness_db = transform(wav).item() | |
# calculate the gain needed to scale to the desired loudness level | |
delta_loudness = -loudness_headroom_db - input_loudness_db | |
gain = 10.0 ** (delta_loudness / 20.0) | |
output = gain * wav | |
if loudness_compressor: | |
output = torch.tanh(output) | |
assert output.isfinite().all(), (input_loudness_db, wav.pow(2).mean().sqrt()) | |
return output | |
def _clip_wav(wav: torch.Tensor, log_clipping: bool = False, stem_name: tp.Optional[str] = None) -> None: | |
"""Utility function to clip the audio with logging if specified.""" | |
max_scale = wav.abs().max() | |
if log_clipping and max_scale > 1: | |
clamp_prob = (wav.abs() > 1).float().mean().item() | |
print(f"CLIPPING {stem_name or ''} happening with proba (a bit of clipping is okay):", | |
clamp_prob, "maximum scale: ", max_scale.item(), file=sys.stderr) | |
wav.clamp_(-1, 1) | |
def normalize_audio(wav: torch.Tensor, normalize: bool = True, | |
strategy: str = 'peak', peak_clip_headroom_db: float = 1, | |
rms_headroom_db: float = 18, loudness_headroom_db: float = 14, | |
loudness_compressor: bool = False, log_clipping: bool = False, | |
sample_rate: tp.Optional[int] = None, | |
stem_name: tp.Optional[str] = None) -> torch.Tensor: | |
"""Normalize the audio according to the prescribed strategy (see after). | |
Args: | |
wav (torch.Tensor): Audio data. | |
normalize (bool): if `True` (default), normalizes according to the prescribed | |
strategy (see after). If `False`, the strategy is only used in case clipping | |
would happen. | |
strategy (str): Can be either 'clip', 'peak', or 'rms'. Default is 'peak', | |
i.e. audio is normalized by its largest value. RMS normalizes by root-mean-square | |
with extra headroom to avoid clipping. 'clip' just clips. | |
peak_clip_headroom_db (float): Headroom in dB when doing 'peak' or 'clip' strategy. | |
rms_headroom_db (float): Headroom in dB when doing 'rms' strategy. This must be much larger | |
than the `peak_clip` one to avoid further clipping. | |
loudness_headroom_db (float): Target loudness for loudness normalization. | |
loudness_compressor (bool): If True, uses tanh based soft clipping. | |
log_clipping (bool): If True, basic logging on stderr when clipping still | |
occurs despite strategy (only for 'rms'). | |
sample_rate (int): Sample rate for the audio data (required for loudness). | |
stem_name (Optional[str]): Stem name for clipping logging. | |
Returns: | |
torch.Tensor: Normalized audio. | |
""" | |
scale_peak = 10 ** (-peak_clip_headroom_db / 20) | |
scale_rms = 10 ** (-rms_headroom_db / 20) | |
if strategy == 'peak': | |
rescaling = (scale_peak / wav.abs().max()) | |
if normalize or rescaling < 1: | |
wav = wav * rescaling | |
elif strategy == 'clip': | |
wav = wav.clamp(-scale_peak, scale_peak) | |
elif strategy == 'rms': | |
mono = wav.mean(dim=0) | |
rescaling = scale_rms / mono.pow(2).mean().sqrt() | |
if normalize or rescaling < 1: | |
wav = wav * rescaling | |
_clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name) | |
elif strategy == 'loudness': | |
assert sample_rate is not None, "Loudness normalization requires sample rate." | |
wav = normalize_loudness(wav, sample_rate, loudness_headroom_db, loudness_compressor) | |
_clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name) | |
else: | |
assert wav.abs().max() < 1 | |
assert strategy == '' or strategy == 'none', f"Unexpected strategy: '{strategy}'" | |
return wav | |
def f32_pcm(wav: torch.Tensor) -> torch.Tensor: | |
"""Convert audio to float 32 bits PCM format. | |
""" | |
if wav.dtype.is_floating_point: | |
return wav | |
else: | |
assert wav.dtype == torch.int16 | |
return wav.float() / 2**15 | |
def i16_pcm(wav: torch.Tensor) -> torch.Tensor: | |
"""Convert audio to int 16 bits PCM format. | |
..Warning:: There exist many formula for doing this convertion. None are perfect | |
due to the asymetry of the int16 range. One either have possible clipping, DC offset, | |
or inconsistancies with f32_pcm. If the given wav doesn't have enough headroom, | |
it is possible that `i16_pcm(f32_pcm)) != Identity`. | |
""" | |
if wav.dtype.is_floating_point: | |
assert wav.abs().max() <= 1 | |
candidate = (wav * 2 ** 15).round() | |
if candidate.max() >= 2 ** 15: # clipping would occur | |
candidate = (wav * (2 ** 15 - 1)).round() | |
return candidate.short() | |
else: | |
assert wav.dtype == torch.int16 | |
return wav | |
def apply_tafade(audio: torch.Tensor, sample_rate, duration=3.0, out=True, start=True, shape: str = "linear", stem_name: tp.Optional[str] = None) -> torch.Tensor: | |
""" | |
Apply fade-in and/or fade-out effects to the audio tensor. | |
Args: | |
audio (torch.Tensor): The input audio tensor of shape (C, L). | |
sample_rate (int): The sample rate of the audio. | |
duration (float, optional): The duration of the fade in seconds. Defaults to 3.0. | |
out (bool, optional): Determines whether to apply fade-in (False) or fade-out (True) effect. Defaults to True. | |
start (bool, optional): Determines whether the fade is applied to the beginning (True) or end (False) of the audio. Defaults to True. | |
shape (str, optional): The shape of the fade. Must be one of: "quarter_sine", "half_sine", "linear", "logarithmic", "exponential". Defaults to "linear". | |
Returns: | |
torch.Tensor: The audio tensor with the fade effect applied. | |
""" | |
fade_samples = int(sample_rate * duration) # Number of samples for the fade duration | |
# Create the fade transform | |
fade_transform = torchaudio.transforms.Fade(fade_in_len=0, fade_out_len=0, fade_shape=shape) | |
if out: | |
fade_transform.fade_out_len = fade_samples | |
else: | |
fade_transform.fade_in_len = fade_samples | |
# Select the portion of the audio to apply the fade | |
if start: | |
audio_fade_section = audio[:, :fade_samples] | |
else: | |
audio_fade_section = audio[:, -fade_samples:] | |
# Apply the fade transform to the audio section | |
audio_faded = fade_transform(audio) | |
# Replace the selected portion of the audio with the faded section | |
if start: | |
audio_faded[:, :fade_samples] = audio_fade_section | |
else: | |
audio_faded[:, -fade_samples:] = audio_fade_section | |
wav = normalize_loudness(audio_faded,sample_rate, loudness_headroom_db=18, loudness_compressor=True) | |
_clip_wav(wav, log_clipping=False, stem_name=stem_name) | |
return wav | |
def apply_fade(audio: torch.Tensor, sample_rate, duration=3.0, out=True, start=True, curve_start:float=0.0, curve_end:float=1.0, current_device:str="cpu", stem_name: tp.Optional[str] = None) -> torch.Tensor: | |
""" | |
Apply fade-in and/or fade-out effects to the audio tensor. | |
Args: | |
audio (torch.Tensor): The input audio tensor of shape (C, L). | |
sample_rate (int): The sample rate of the audio. | |
duration (float, optional): The duration of the fade in seconds. Defaults to 3.0. | |
out (bool, optional): Determines whether to apply fade-in (False) or fade-out (True) effect. Defaults to True. | |
start (bool, optional): Determines whether the fade is applied to the beginning (True) or end (False) of the audio. Defaults to True. | |
curve_start (float, optional): The starting amplitude of the fade curve. Defaults to 0.0. | |
curve_end (float, optional): The ending amplitude of the fade curve. Defaults to 1.0. | |
current_device (str, optional): The device on which the fade curve tensor should be created. Defaults to "cpu". | |
Returns: | |
torch.Tensor: The audio tensor with the fade effect applied. | |
""" | |
fade_samples = int(sample_rate * duration) # Number of samples for the fade duration | |
fade_curve = torch.linspace(curve_start, curve_end, fade_samples, device=current_device) # Generate linear fade curve | |
if out: | |
fade_curve = fade_curve.flip(0) # Reverse the fade curve for fade out | |
# Select the portion of the audio to apply the fade | |
if start: | |
audio_fade_section = audio[:, :fade_samples] | |
else: | |
audio_fade_section = audio[:, -fade_samples:] | |
# Apply the fade curve to the audio section | |
audio_faded = audio.clone() | |
audio_faded[:, :fade_samples] *= fade_curve.unsqueeze(0) | |
audio_faded[:, -fade_samples:] *= fade_curve.unsqueeze(0) | |
# Replace the selected portion of the audio with the faded section | |
if start: | |
audio_faded[:, :fade_samples] = audio_fade_section | |
else: | |
audio_faded[:, -fade_samples:] = audio_fade_section | |
wav = normalize_loudness(audio_faded,sample_rate, loudness_headroom_db=18, loudness_compressor=True) | |
_clip_wav(wav, log_clipping=False, stem_name=stem_name) | |
return wav | |
def apply_splice_effect(waveform1, sample_rate1, waveform2, sample_rate2, overlap): | |
# Convert sample rates to integers | |
sample_rate1 = int(sample_rate1) | |
sample_rate2 = int(sample_rate2) | |
# Convert tensors to mono-channel if needed | |
if waveform1.ndim > 2: | |
waveform1 = waveform1.mean(dim=1) | |
if waveform2.ndim > 2: | |
waveform2 = waveform2.mean(dim=1) | |
## Convert tensors to numpy arrays | |
#waveform1_np = waveform1.numpy() | |
#waveform2_np = waveform2.numpy() | |
# Apply splice effect using torchaudio.sox_effects.apply_effects_tensor | |
effects = [ | |
["splice", f"-q {waveform1},{overlap}"], | |
] | |
output_waveform, output_sample_rate = torchaudio.sox_effects.apply_effects_tensor( | |
torch.cat([waveform1.unsqueeze(0), waveform2.unsqueeze(0)], dim=2), | |
sample_rate1, | |
effects | |
) | |
return output_waveform.squeeze(0), output_sample_rate | |