Spaces:
Running
on
T4
Running
on
T4
Process longer Audio
Browse files- .gitignore +1 -0
- app.py +33 -16
- audiocraft/utils/extend.py +111 -0
- web-ui.bat +1 -0
.gitignore
CHANGED
@@ -53,3 +53,4 @@ ENV/
|
|
53 |
/notebooks
|
54 |
/local_scripts
|
55 |
/notes
|
|
|
|
53 |
/notebooks
|
54 |
/local_scripts
|
55 |
/notes
|
56 |
+
/.vs
|
app.py
CHANGED
@@ -13,6 +13,8 @@ import gradio as gr
|
|
13 |
import os
|
14 |
from audiocraft.models import MusicGen
|
15 |
from audiocraft.data.audio import audio_write
|
|
|
|
|
16 |
|
17 |
MODEL = None
|
18 |
IS_SHARED_SPACE = "musicgen/MusicGen" in os.environ.get('SPACE_ID', '')
|
@@ -30,32 +32,47 @@ def predict(model, text, melody, duration, topk, topp, temperature, cfg_coef):
|
|
30 |
MODEL = load_model(model)
|
31 |
|
32 |
if duration > MODEL.lm.cfg.dataset.segment_duration:
|
33 |
-
|
|
|
|
|
34 |
MODEL.set_generation_params(
|
35 |
use_sampling=True,
|
36 |
top_k=topk,
|
37 |
top_p=topp,
|
38 |
temperature=temperature,
|
39 |
cfg_coef=cfg_coef,
|
40 |
-
duration=
|
41 |
)
|
42 |
|
43 |
if melody:
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
else:
|
56 |
output = MODEL.generate(descriptions=[text], progress=False)
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
|
60 |
audio_write(
|
61 |
file.name, output, MODEL.sample_rate, strategy="loudness",
|
@@ -91,7 +108,7 @@ def ui(**kwargs):
|
|
91 |
with gr.Row():
|
92 |
model = gr.Radio(["melody", "medium", "small", "large"], label="Model", value="melody", interactive=True)
|
93 |
with gr.Row():
|
94 |
-
duration = gr.Slider(minimum=1, maximum=
|
95 |
with gr.Row():
|
96 |
topk = gr.Number(label="Top-k", value=250, interactive=True)
|
97 |
topp = gr.Number(label="Top-p", value=0, interactive=True)
|
@@ -194,7 +211,7 @@ if __name__ == "__main__":
|
|
194 |
parser.add_argument(
|
195 |
'--server_port',
|
196 |
type=int,
|
197 |
-
default=
|
198 |
help='Port to run the server listener on',
|
199 |
)
|
200 |
parser.add_argument(
|
|
|
13 |
import os
|
14 |
from audiocraft.models import MusicGen
|
15 |
from audiocraft.data.audio import audio_write
|
16 |
+
from audiocraft.utils.extend import generate_music_segments
|
17 |
+
import numpy as np
|
18 |
|
19 |
MODEL = None
|
20 |
IS_SHARED_SPACE = "musicgen/MusicGen" in os.environ.get('SPACE_ID', '')
|
|
|
32 |
MODEL = load_model(model)
|
33 |
|
34 |
if duration > MODEL.lm.cfg.dataset.segment_duration:
|
35 |
+
segment_duration = MODEL.lm.cfg.dataset.segment_duration
|
36 |
+
else:
|
37 |
+
segment_duration = duration
|
38 |
MODEL.set_generation_params(
|
39 |
use_sampling=True,
|
40 |
top_k=topk,
|
41 |
top_p=topp,
|
42 |
temperature=temperature,
|
43 |
cfg_coef=cfg_coef,
|
44 |
+
duration=segment_duration,
|
45 |
)
|
46 |
|
47 |
if melody:
|
48 |
+
if duration > MODEL.lm.cfg.dataset.segment_duration:
|
49 |
+
output_segments = generate_music_segments(text, melody, MODEL, duration, MODEL.lm.cfg.dataset.segment_duration)
|
50 |
+
else:
|
51 |
+
# pure original code
|
52 |
+
sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t().unsqueeze(0)
|
53 |
+
print(melody.shape)
|
54 |
+
if melody.dim() == 2:
|
55 |
+
melody = melody[None]
|
56 |
+
melody = melody[..., :int(sr * MODEL.lm.cfg.dataset.segment_duration)]
|
57 |
+
output = MODEL.generate_with_chroma(
|
58 |
+
descriptions=[text],
|
59 |
+
melody_wavs=melody,
|
60 |
+
melody_sample_rate=sr,
|
61 |
+
progress=True
|
62 |
+
)
|
63 |
else:
|
64 |
output = MODEL.generate(descriptions=[text], progress=False)
|
65 |
|
66 |
+
if output_segments:
|
67 |
+
try:
|
68 |
+
# Combine the output segments into one long audio file
|
69 |
+
output_segments = [segment.detach().cpu().float()[0] for segment in output_segments]
|
70 |
+
output = torch.cat(output_segments, dim=2)
|
71 |
+
except Exception as e:
|
72 |
+
print(f"error combining segments: {e}. Using first segment only")
|
73 |
+
output = output_segments[0].detach().cpu().float()[0]
|
74 |
+
else:
|
75 |
+
output = output.detach().cpu().float()[0]
|
76 |
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
|
77 |
audio_write(
|
78 |
file.name, output, MODEL.sample_rate, strategy="loudness",
|
|
|
108 |
with gr.Row():
|
109 |
model = gr.Radio(["melody", "medium", "small", "large"], label="Model", value="melody", interactive=True)
|
110 |
with gr.Row():
|
111 |
+
duration = gr.Slider(minimum=1, maximum=1000, value=10, label="Duration", interactive=True)
|
112 |
with gr.Row():
|
113 |
topk = gr.Number(label="Top-k", value=250, interactive=True)
|
114 |
topp = gr.Number(label="Top-p", value=0, interactive=True)
|
|
|
211 |
parser.add_argument(
|
212 |
'--server_port',
|
213 |
type=int,
|
214 |
+
default=7859,
|
215 |
help='Port to run the server listener on',
|
216 |
)
|
217 |
parser.add_argument(
|
audiocraft/utils/extend.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math
|
3 |
+
from audiocraft.models import MusicGen
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
def separate_audio_segments(audio, segment_duration=30):
|
8 |
+
sr, audio_data = audio[0], audio[1]
|
9 |
+
|
10 |
+
total_samples = len(audio_data)
|
11 |
+
segment_samples = sr * segment_duration
|
12 |
+
|
13 |
+
total_segments = math.ceil(total_samples / segment_samples)
|
14 |
+
|
15 |
+
segments = []
|
16 |
+
|
17 |
+
for segment_idx in range(total_segments):
|
18 |
+
print(f"Audio Input segment {segment_idx + 1} / {total_segments + 1} \r")
|
19 |
+
start_sample = segment_idx * segment_samples
|
20 |
+
end_sample = (segment_idx + 1) * segment_samples
|
21 |
+
|
22 |
+
segment = audio_data[start_sample:end_sample]
|
23 |
+
segments.append((sr, segment))
|
24 |
+
|
25 |
+
return segments
|
26 |
+
|
27 |
+
def generate_music_segments(text, melody, MODEL, duration:int=10, segment_duration:int=30):
|
28 |
+
# generate audio segments
|
29 |
+
melody_segments = separate_audio_segments(melody, segment_duration)
|
30 |
+
|
31 |
+
# Create a list to store the melody tensors for each segment
|
32 |
+
melodys = []
|
33 |
+
output_segments = []
|
34 |
+
|
35 |
+
# Calculate the total number of segments
|
36 |
+
total_segments = max(math.ceil(duration / segment_duration),1)
|
37 |
+
print(f"total Segments to Generate: {total_segments} for {duration} seconds. Each segment is {segment_duration} seconds")
|
38 |
+
|
39 |
+
# If melody_segments is shorter than total_segments, repeat the segments until the total number of segments is reached
|
40 |
+
if len(melody_segments) < total_segments:
|
41 |
+
for i in range(total_segments - len(melody_segments)):
|
42 |
+
segment = melody_segments[i]
|
43 |
+
melody_segments.append(segment)
|
44 |
+
print(f"melody_segments: {len(melody_segments)} fixed")
|
45 |
+
|
46 |
+
# Iterate over the segments to create list of Meldoy tensors
|
47 |
+
for segment_idx in range(total_segments):
|
48 |
+
print(f"segment {segment_idx} of {total_segments} \r")
|
49 |
+
sr, verse = melody_segments[segment_idx][0], torch.from_numpy(melody_segments[segment_idx][1]).to(MODEL.device).float().t().unsqueeze(0)
|
50 |
+
|
51 |
+
print(f"shape:{verse.shape} dim:{verse.dim()}")
|
52 |
+
if verse.dim() == 2:
|
53 |
+
verse = verse[None]
|
54 |
+
verse = verse[..., :int(sr * MODEL.lm.cfg.dataset.segment_duration)]
|
55 |
+
# Append the segment to the melodys list
|
56 |
+
melodys.append(verse)
|
57 |
+
|
58 |
+
for idx, verse in enumerate(melodys):
|
59 |
+
print(f"Generating New Melody Segment {idx + 1}: {text}\r")
|
60 |
+
output = MODEL.generate_with_chroma(
|
61 |
+
descriptions=[text],
|
62 |
+
melody_wavs=verse,
|
63 |
+
melody_sample_rate=sr,
|
64 |
+
progress=True
|
65 |
+
)
|
66 |
+
|
67 |
+
# Append the generated output to the list of segments
|
68 |
+
#output_segments.append(output[:, :segment_duration])
|
69 |
+
output_segments.append(output)
|
70 |
+
print(f"output_segments: {len(output_segments)}: shape[0]: {output.shape} dim {output.dim()}")
|
71 |
+
return output_segments
|
72 |
+
|
73 |
+
#def generate_music_segments(text, melody, duration, MODEL, segment_duration=30):
|
74 |
+
# sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t().unsqueeze(0)
|
75 |
+
|
76 |
+
# # Create a list to store the melody tensors for each segment
|
77 |
+
# melodys = []
|
78 |
+
|
79 |
+
# # Calculate the total number of segments
|
80 |
+
# total_segments = math.ceil(melody.shape[1] / (sr * segment_duration))
|
81 |
+
|
82 |
+
# # Iterate over the segments
|
83 |
+
# for segment_idx in range(total_segments):
|
84 |
+
# print(f"segment {segment_idx + 1} / {total_segments + 1} \r")
|
85 |
+
# start_frame = segment_idx * sr * segment_duration
|
86 |
+
# end_frame = (segment_idx + 1) * sr * segment_duration
|
87 |
+
|
88 |
+
# # Extract the segment from the melody tensor
|
89 |
+
# segment = melody[:, start_frame:end_frame]
|
90 |
+
|
91 |
+
# # Append the segment to the melodys list
|
92 |
+
# melodys.append(segment)
|
93 |
+
|
94 |
+
# output_segments = []
|
95 |
+
|
96 |
+
# for segment in melodys:
|
97 |
+
# output = MODEL.generate_with_chroma(
|
98 |
+
# descriptions=[text],
|
99 |
+
# melody_wavs=segment,
|
100 |
+
# melody_sample_rate=sr,
|
101 |
+
# progress=False
|
102 |
+
# )
|
103 |
+
|
104 |
+
# # Append the generated output to the list of segments
|
105 |
+
# output_segments.append(output[:, :segment_duration])
|
106 |
+
|
107 |
+
# return output_segments
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
|
web-ui.bat
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
py -m app
|