SoccerRAG / app.py
SushantGautam's picture
Update app.py
d40b775 verified
import os
from src.extractor import create_extractor
from src.sql_chain import create_agent
from dotenv import load_dotenv
import chainlit as cl
import json
# Loading the environment variables
load_dotenv(".env")
# Create the extractor and agent
model = os.getenv('OPENAI_MODEL')
# Check if model exists, if not, set it to default
# if not model:
# model = "gpt-3.5-turbo-0125"
interactive_key_done= False if os.getenv('INTERACTIVE_OPENAI_KEY', None) else True
if interactive_key_done:
ex = create_extractor()
ag = create_agent(llm_model=model)
else:
ex= None
ag = None
from chainlit.input_widget import Select
@cl.on_settings_update
async def setup_agent(settings):
global interactive_key_done
# if cl.user_session.get("openai_api_key") == os.environ["OPENAI_API_KEY"]:
os.environ["OPENAI_API_KEY"]= ""
await cl.Message("OpenAI API Key cleared, start a new chat to set new key!").send()
interactive_key_done= False
@cl.on_chat_start
async def on_chat_start():
global ex, ag, interactive_key_done
if not interactive_key_done:
res = await cl.AskUserMessage(content=" 🔑 Input your OPENAI_API_KEY from https://platform.openai.com/account/api-keys", timeout=10).send()
if res:
await cl.Message(
content=f"⌛ Checking if provided OpenAI API key works. Please wait...",
).send()
cl.user_session.set("openai_api_key", res.get("output"))
try:
os.environ["OPENAI_API_KEY"] = res.get("output")
ex = create_extractor()
ag = create_agent(llm_model=model)
interactive_key_done= True
await cl.Message(author="Socccer-RAG", content="✅ Voila! ⚽ Socccer-RAG warmed up and ready to go! You can start a fresh chat session from New Chat").send()
await cl.Message("💡Remeber to clear your keys when you are done. To remove/change you OpenAI API key, click on the settings icon on the left of the chat box.").send()
except Exception as e:
await cl.Message(
content=f"❌Error: {e}. \n 🤗 Please Start new chat to set correct key.",
).send()
return
await cl.ChatSettings([Select(id="Setting",label="Remove/change current OpenAI API Key?",values=["Click Confirm:"],)]).send()
# ag = create_agent(llm_model = "gpt-4-0125-preview")
def extract_func(user_prompt: str):
"""
Parameters
----------
user_prompt: str
Returns
-------
A dictionary of extracted properties
"""
extracted = ex.extract_chainlit(user_prompt)
return extracted
def validate_func(properties:dict): # Auto validate as much as possible
"""
Parameters
----------
extracted properties: dict
Returns
-------
Two dictionaries:
1. validated: The validated properties
2. need_input: Properties that need human validation
"""
validated, need_input = ex.validate_chainlit(properties)
return validated, need_input
def human_validate_func(human, validated, user_prompt):
"""
Parameters
----------
human - Human validated properties in the form of a list of dictionaries
validated - Validated properties in the form of a dictionary
user_prompt - The user prompt
Returns
-------
The cleaned prompt with updated values
"""
for item in human:
# Iterate through key-value pairs in the current dictionary
for key, value in item.items():
if value == "":
continue
# Check if the key exists in the validated dictionary
if key in validated:
# Append the value to the existing list
validated[key].append(value)
else:
# Create a new key with the value as a new list
validated[key] = [value]
val_list = [validated]
return ex.build_prompt_chainlit(val_list, user_prompt)
def no_human(validated, user_prompt):
"""
In case there is no need for human validation, this function will be called
Parameters
----------
validated
user_prompt
Returns
-------
Updated prompt
"""
return ex.build_prompt_chainlit([validated], user_prompt)
def ask(text):
"""
Calls the SQL Agent to get the final answer
Parameters
----------
text
Returns
-------
The final answer
"""
ans, const = ag.ask(text)
return {"output": ans["output"]}, 12
@cl.step
async def Cleaner(text): # just for printing
return text
@cl.step
async def LLM(cleaned_prompt): # just for printing
ans, const = ask(cleaned_prompt)
return ans, const
@cl.step
async def Choice(text):
return text
@cl.step
async def Extractor(user_prompt):
extracted_values = extract_func(user_prompt)
return extracted_values
@cl.on_message # this function will be called every time a user inputs a message in the UI
async def main(message: cl.Message):
global interactive_key_done
if not interactive_key_done:
await cl.Message(
content=f"Please set the OpenAI API key first by starting a new chat.",
).send()
return
user_prompt = message.content # Get the user prompt
# extracted_values = extract_func(user_prompt)
#
# json_formatted = json.dumps(extracted_values, indent=4)
extracted_values = await Extractor(user_prompt)
json_formatted = json.dumps(extracted_values, indent=4)
# Print the extracted values in json format
await cl.Message(author="Extractor", content=f"Extracted properties:\n```json\n{json_formatted}\n```").send()
# Try to validate everything
validated, need_input = validate_func(extracted_values)
await cl.Message(author="Validator", content=f"Extracted properties will now be validated against the database.").send()
if need_input:
# If we need validation, we will ask the user to select the correct value
for element in need_input:
key = next(iter(element)) # Get the first key in the dictionary
# Present user with options to choose from
actions = [
cl.Action(name="option", value=value, label=value)
for value in element['top_matches']
]
await cl.Message(author="Resolver", content=f"Need to identify the correct value for {key}: ").send()
res = await cl.AskActionMessage(author="Resolver",
content=f"Which one do you mean for {key}?",
actions=actions
).send()
selected_value = res.get("value") if res else ""
element[key] = selected_value
element.pop("top_matches")
await Choice("Options were "+ ", ".join([action.label for action in actions]))
# Get the cleaned prompt
cleaned_prompt = human_validate_func(need_input, validated, user_prompt)
else:
cleaned_prompt = no_human(validated, user_prompt)
# Print the cleaned prompt
cleaner_message = cl.Message(author="Cleaner", content=f"New prompt is as follows:\n{cleaned_prompt}")
await cleaner_message.send()
# Call the SQL agent to get the final answer
# ans, const = ask(cleaned_prompt) # Get the final answer from some function
await cl.Message(content=f"I will now query the database for information.").send()
ans, const = await LLM(cleaned_prompt)
await cl.Message(content=f"This is the final answer: \n\n{ans['output']}").send()