Spaces:
Sleeping
Sleeping
buzzCraft
commited on
Commit
·
291bc70
1
Parent(s):
0e37947
Adding ChainLit demo
Browse files- .env_demo +5 -3
- .gitignore +11 -0
- README.md +16 -2
- app.py +176 -0
- chainlit.md +14 -0
- extractor.py +560 -0
- main.py +9 -2
- main_cli.py +27 -0
- media/chainlit.png +0 -0
- requirements.txt +3 -1
- src/database.py +45 -38
- src/extractor.py +103 -52
- src/sql_chain.py +40 -15
.env_demo
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
-
OPENAI_API_KEY=
|
|
|
|
|
2 |
LANGSMITH = False
|
3 |
-
LANGSMITH_API_KEY=
|
4 |
-
|
|
|
1 |
+
OPENAI_API_KEY=OPENAI_API_KEY
|
2 |
+
OPENAI_MODEL = gpt-3.5-turbo-0125
|
3 |
+
DATABASE_PATH = data/gamess.db
|
4 |
LANGSMITH = False
|
5 |
+
LANGSMITH_API_KEY=
|
6 |
+
LANGSMITH_PROJECT=SoccerRag
|
.gitignore
CHANGED
@@ -1,2 +1,13 @@
|
|
1 |
|
2 |
*.pyc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
*.pyc
|
3 |
+
.env
|
4 |
+
.chainlit/config.toml
|
5 |
+
.chainlit/translations/en-US.json
|
6 |
+
.idea/inspectionProfiles/profiles_settings.xml
|
7 |
+
.idea/inspectionProfiles/Project_Default.xml
|
8 |
+
.idea/misc.xml
|
9 |
+
.idea/modules.xml
|
10 |
+
.idea/soccer-rag.iml
|
11 |
+
.idea/vcs.xml
|
12 |
+
extractor.log
|
13 |
+
data/games.db
|
README.md
CHANGED
@@ -32,12 +32,25 @@ python src/database.py
|
|
32 |
````
|
33 |
Adjust the path to the data in the database.py file as needed.
|
34 |
|
35 |
-
## Running the code
|
36 |
To run the code, execute the following command:
|
37 |
````bash
|
|
|
|
|
38 |
python main.py
|
39 |
````
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
### Example query
|
43 |
````angular2html
|
@@ -48,6 +61,7 @@ Lionel Messi has scored the following number of goals each season:
|
|
48 |
- 2016-2017: 31 goals
|
49 |
````
|
50 |
|
|
|
51 |
## Results
|
52 |
![result-table.png](media%2Fresult-table.png)
|
53 |
|
|
|
32 |
````
|
33 |
Adjust the path to the data in the database.py file as needed.
|
34 |
|
35 |
+
## Running the code in command line
|
36 |
To run the code, execute the following command:
|
37 |
````bash
|
38 |
+
The code will prompt you to enter a natural language query.
|
39 |
+
|
40 |
python main.py
|
41 |
````
|
42 |
+
You can also call main_cli.py with a query as an argument:
|
43 |
+
````bash
|
44 |
+
python main_cli.py -q "How many goals has Messi scored each season?"
|
45 |
+
````
|
46 |
+
|
47 |
+
## Running the code in ChainLit (GUI)
|
48 |
+
To run the code in ChainLit, execute the following command:
|
49 |
+
````bash
|
50 |
+
chainlit run app.py
|
51 |
+
````
|
52 |
+
This will open up a browser window with the GUI.
|
53 |
+
![ChainLit](media/chainlit.png)
|
54 |
|
55 |
### Example query
|
56 |
````angular2html
|
|
|
61 |
- 2016-2017: 31 goals
|
62 |
````
|
63 |
|
64 |
+
|
65 |
## Results
|
66 |
![result-table.png](media%2Fresult-table.png)
|
67 |
|
app.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from src.extractor import create_extractor
|
3 |
+
from src.sql_chain import create_agent
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import chainlit as cl
|
6 |
+
import json
|
7 |
+
# Loading the environment variables
|
8 |
+
load_dotenv(".env")
|
9 |
+
# Create the extractor and agent
|
10 |
+
|
11 |
+
model = os.getenv('OPENAI_MODEL')
|
12 |
+
# Check if model exists, if not, set it to default
|
13 |
+
# if not model:
|
14 |
+
# model = "gpt-3.5-turbo-0125"
|
15 |
+
ex = create_extractor()
|
16 |
+
ag = create_agent(llm_model=model)
|
17 |
+
# ag = create_agent(llm_model = "gpt-4-0125-preview")
|
18 |
+
openai_api_key = os.getenv('OPENAI_API_KEY')
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
def extract_func(user_prompt: str):
|
24 |
+
"""
|
25 |
+
|
26 |
+
Parameters
|
27 |
+
----------
|
28 |
+
user_prompt: str
|
29 |
+
|
30 |
+
Returns
|
31 |
+
-------
|
32 |
+
A dictionary of extracted properties
|
33 |
+
"""
|
34 |
+
extracted = ex.extract_chainlit(user_prompt)
|
35 |
+
return extracted
|
36 |
+
def validate_func(properties:dict): # Auto validate as much as possible
|
37 |
+
"""
|
38 |
+
Parameters
|
39 |
+
----------
|
40 |
+
extracted properties: dict
|
41 |
+
|
42 |
+
Returns
|
43 |
+
-------
|
44 |
+
Two dictionaries:
|
45 |
+
1. validated: The validated properties
|
46 |
+
2. need_input: Properties that need human validation
|
47 |
+
"""
|
48 |
+
validated, need_input = ex.validate_chainlit(properties)
|
49 |
+
return validated, need_input
|
50 |
+
|
51 |
+
def human_validate_func(human, validated, user_prompt):
|
52 |
+
"""
|
53 |
+
|
54 |
+
Parameters
|
55 |
+
----------
|
56 |
+
human - Human validated properties in the form of a list of dictionaries
|
57 |
+
validated - Validated properties in the form of a dictionary
|
58 |
+
user_prompt - The user prompt
|
59 |
+
|
60 |
+
Returns
|
61 |
+
-------
|
62 |
+
The cleaned prompt with updated values
|
63 |
+
"""
|
64 |
+
for item in human:
|
65 |
+
# Iterate through key-value pairs in the current dictionary
|
66 |
+
for key, value in item.items():
|
67 |
+
if value == "":
|
68 |
+
continue
|
69 |
+
# Check if the key exists in the validated dictionary
|
70 |
+
if key in validated:
|
71 |
+
# Append the value to the existing list
|
72 |
+
validated[key].append(value)
|
73 |
+
else:
|
74 |
+
# Create a new key with the value as a new list
|
75 |
+
validated[key] = [value]
|
76 |
+
val_list = [validated]
|
77 |
+
|
78 |
+
return ex.build_prompt_chainlit(val_list, user_prompt)
|
79 |
+
|
80 |
+
def no_human(validated, user_prompt):
|
81 |
+
"""
|
82 |
+
In case there is no need for human validation, this function will be called
|
83 |
+
Parameters
|
84 |
+
----------
|
85 |
+
validated
|
86 |
+
user_prompt
|
87 |
+
|
88 |
+
Returns
|
89 |
+
-------
|
90 |
+
Updated prompt
|
91 |
+
"""
|
92 |
+
return ex.build_prompt_chainlit([validated], user_prompt)
|
93 |
+
|
94 |
+
|
95 |
+
def ask(text):
|
96 |
+
"""
|
97 |
+
Calls the SQL Agent to get the final answer
|
98 |
+
Parameters
|
99 |
+
----------
|
100 |
+
text
|
101 |
+
|
102 |
+
Returns
|
103 |
+
-------
|
104 |
+
The final answer
|
105 |
+
"""
|
106 |
+
ans, const = ag.ask(text)
|
107 |
+
return {"output": ans["output"]}, 12
|
108 |
+
|
109 |
+
|
110 |
+
@cl.step
|
111 |
+
async def Cleaner(text): # just for printing
|
112 |
+
return text
|
113 |
+
|
114 |
+
|
115 |
+
@cl.step
|
116 |
+
async def LLM(cleaned_prompt): # just for printing
|
117 |
+
ans, const = ask(cleaned_prompt)
|
118 |
+
return ans, const
|
119 |
+
|
120 |
+
|
121 |
+
@cl.step
|
122 |
+
async def Choice(text):
|
123 |
+
return text
|
124 |
+
|
125 |
+
@cl.step
|
126 |
+
async def Extractor(user_prompt):
|
127 |
+
extracted_values = extract_func(user_prompt)
|
128 |
+
return extracted_values
|
129 |
+
|
130 |
+
|
131 |
+
@cl.on_message # this function will be called every time a user inputs a message in the UI
|
132 |
+
async def main(message: cl.Message):
|
133 |
+
user_prompt = message.content # Get the user prompt
|
134 |
+
# extracted_values = extract_func(user_prompt)
|
135 |
+
#
|
136 |
+
# json_formatted = json.dumps(extracted_values, indent=4)
|
137 |
+
extracted_values = await Extractor(user_prompt)
|
138 |
+
json_formatted = json.dumps(extracted_values, indent=4)
|
139 |
+
# Print the extracted values in json format
|
140 |
+
await cl.Message(author="Extractor", content=f"Extracted properties:\n```json\n{json_formatted}\n```").send()
|
141 |
+
# Try to validate everything
|
142 |
+
validated, need_input = validate_func(extracted_values)
|
143 |
+
await cl.Message(author="Validator", content=f"Extracted properties will now be validated against the database.").send()
|
144 |
+
if need_input:
|
145 |
+
# If we need validation, we will ask the user to select the correct value
|
146 |
+
for element in need_input:
|
147 |
+
key = next(iter(element)) # Get the first key in the dictionary
|
148 |
+
# Present user with options to choose from
|
149 |
+
actions = [
|
150 |
+
cl.Action(name=value, value=value, description=str(value))
|
151 |
+
for value in element['top_matches']
|
152 |
+
]
|
153 |
+
actions.append(cl.Action(name="No Update", value="", description="No Update"))
|
154 |
+
# Add a "No Update" option
|
155 |
+
res = await cl.AskActionMessage(
|
156 |
+
author="Validator",
|
157 |
+
content=f"Select the correct value for {element[key]}",
|
158 |
+
actions=actions
|
159 |
+
).send()
|
160 |
+
selected_value = res.get("value", "") if res else ""
|
161 |
+
element[key] = selected_value
|
162 |
+
element.pop("top_matches")
|
163 |
+
await Choice(selected_value) # Logging choice
|
164 |
+
# Get the cleaned prompt
|
165 |
+
cleaned_prompt = human_validate_func(need_input, validated, user_prompt)
|
166 |
+
else:
|
167 |
+
cleaned_prompt = no_human(validated, user_prompt)
|
168 |
+
# Print the cleaned prompt
|
169 |
+
cleaner_message = cl.Message(author="Cleaner", content=f"New prompt is as follows:\n{cleaned_prompt}")
|
170 |
+
await cleaner_message.send()
|
171 |
+
|
172 |
+
# Call the SQL agent to get the final answer
|
173 |
+
# ans, const = ask(cleaned_prompt) # Get the final answer from some function
|
174 |
+
await cl.Message(content=f"I will now query the database for information.").send()
|
175 |
+
ans, const = await LLM(cleaned_prompt)
|
176 |
+
await cl.Message(content=f"This is the final answer: \n\n{ans['output']}").send()
|
chainlit.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Welcome to Chainlit! 🚀🤖
|
2 |
+
|
3 |
+
Hi there, Developer! 👋 We're excited to have you on board. Chainlit is a powerful tool designed to help you prototype, debug and share applications built on top of LLMs.
|
4 |
+
|
5 |
+
## Useful Links 🔗
|
6 |
+
|
7 |
+
- **Documentation:** Get started with our comprehensive [Chainlit Documentation](https://docs.chainlit.io) 📚
|
8 |
+
- **Discord Community:** Join our friendly [Chainlit Discord](https://discord.gg/k73SQ3FyUh) to ask questions, share your projects, and connect with other developers! 💬
|
9 |
+
|
10 |
+
We can't wait to see what you create with Chainlit! Happy coding! 💻😊
|
11 |
+
|
12 |
+
## Welcome screen
|
13 |
+
|
14 |
+
To modify the welcome screen, edit the `chainlit.md` file at the root of your project. If you do not want a welcome screen, just leave this file empty.
|
extractor.py
ADDED
@@ -0,0 +1,560 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
from langchain.chains import create_extraction_chain_pydantic
|
4 |
+
from langchain_core.prompts import ChatPromptTemplate
|
5 |
+
from langchain.chains import create_extraction_chain
|
6 |
+
from copy import deepcopy
|
7 |
+
from langchain_openai import ChatOpenAI
|
8 |
+
from langchain_community.utilities import SQLDatabase
|
9 |
+
import os
|
10 |
+
import difflib
|
11 |
+
import ast
|
12 |
+
import json
|
13 |
+
import re
|
14 |
+
from thefuzz import process
|
15 |
+
# Set up logging
|
16 |
+
import logging
|
17 |
+
|
18 |
+
from dotenv import load_dotenv
|
19 |
+
|
20 |
+
load_dotenv(".env")
|
21 |
+
|
22 |
+
logging.basicConfig(level=logging.INFO)
|
23 |
+
# Save the log to a file
|
24 |
+
handler = logging.FileHandler('extractor.log')
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY')
|
28 |
+
# os.environ["ANTHROPIC_API_KEY"] = os.getenv('ANTHROPIC_API_KEY')
|
29 |
+
|
30 |
+
if os.getenv('LANGSMITH'):
|
31 |
+
os.environ['LANGCHAIN_TRACING_V2'] = 'true'
|
32 |
+
os.environ['LANGCHAIN_ENDPOINT'] = 'https://api.smith.langchain.com'
|
33 |
+
os.environ[
|
34 |
+
'LANGCHAIN_API_KEY'] = os.getenv("LANGSMITH_API_KEY")
|
35 |
+
os.environ['LANGCHAIN_PROJECT'] = os.getenv('LANGSMITH_PROJECT')
|
36 |
+
db_uri = os.getenv('DATABASE_PATH')
|
37 |
+
db_uri = f"sqlite:///{db_uri}"
|
38 |
+
db = SQLDatabase.from_uri(db_uri)
|
39 |
+
|
40 |
+
# from langchain_anthropic import ChatAnthropic
|
41 |
+
class Extractor():
|
42 |
+
# llm = ChatOpenAI(model_name="gpt-4-0125-preview", temperature=0)
|
43 |
+
#gpt-3.5-turbo
|
44 |
+
def __init__(self, model="gpt-3.5-turbo-0125", schema_config=None, custom_extractor_prompt=None):
|
45 |
+
# model = "gpt-4-0125-preview"
|
46 |
+
if custom_extractor_prompt:
|
47 |
+
cust_promt = ChatPromptTemplate.from_template(custom_extractor_prompt)
|
48 |
+
|
49 |
+
self.llm = ChatOpenAI(model=model, temperature=0)
|
50 |
+
# self.llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0)
|
51 |
+
self.schema = schema_config or {}
|
52 |
+
self.chain = create_extraction_chain(self.schema, self.llm, prompt=cust_promt)
|
53 |
+
|
54 |
+
def extract(self, query):
|
55 |
+
return self.chain.invoke(query)
|
56 |
+
|
57 |
+
|
58 |
+
class Retriever():
|
59 |
+
def __init__(self, db, config):
|
60 |
+
self.db = db
|
61 |
+
self.config = config
|
62 |
+
self.table = config.get('db_table')
|
63 |
+
self.column = config.get('db_column')
|
64 |
+
self.pk_column = config.get('pk_column')
|
65 |
+
self.numeric = config.get('numeric', False)
|
66 |
+
self.response = []
|
67 |
+
self.query = f"SELECT {self.column} FROM {self.table}"
|
68 |
+
self.augmented_table = config.get('augmented_table', None)
|
69 |
+
self.augmented_column = config.get('augmented_column', None)
|
70 |
+
self.augmented_fk = config.get('augmented_fk', None)
|
71 |
+
|
72 |
+
def query_as_list(self):
|
73 |
+
# Execute the query
|
74 |
+
response = self.db.run(self.query)
|
75 |
+
response = [el for sub in ast.literal_eval(response) for el in sub if el]
|
76 |
+
if not self.numeric:
|
77 |
+
response = [re.sub(r"\b\d+\b", "", string).strip() for string in response]
|
78 |
+
self.response = list(set(response))
|
79 |
+
# print(self.response)
|
80 |
+
return self.response
|
81 |
+
|
82 |
+
def get_augmented_items(self, prompt):
|
83 |
+
if self.augmented_table is None:
|
84 |
+
return None
|
85 |
+
else:
|
86 |
+
# Construct the query to search for the prompt in the augmented table
|
87 |
+
query = f"SELECT {self.augmented_fk} FROM {self.augmented_table} WHERE LOWER({self.augmented_column}) = LOWER('{prompt}')"
|
88 |
+
|
89 |
+
# Execute the query
|
90 |
+
fk_response = self.db.run(query)
|
91 |
+
if fk_response:
|
92 |
+
# Extract the FK value
|
93 |
+
fk_response = ast.literal_eval(fk_response)
|
94 |
+
fk_value = fk_response[0][0]
|
95 |
+
query = f"SELECT {self.column} FROM {self.table} WHERE {self.pk_column} = {fk_value}"
|
96 |
+
# Execute the query
|
97 |
+
matching_response = self.db.run(query)
|
98 |
+
# Extract the matching response
|
99 |
+
matching_response = ast.literal_eval(matching_response)
|
100 |
+
matching_response = matching_response[0][0]
|
101 |
+
return matching_response
|
102 |
+
else:
|
103 |
+
return None
|
104 |
+
|
105 |
+
def find_close_matches(self, target_string, n=3, method="difflib", threshold=70):
|
106 |
+
"""
|
107 |
+
Find and return the top n close matches to target_string in the database query results.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
- target_string (str): The string to match against the database results.
|
111 |
+
- n (int): Number of top matches to return.
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
- list of tuples: Each tuple contains a match and its score.
|
115 |
+
"""
|
116 |
+
# Ensure we have the response list populated
|
117 |
+
if not self.response:
|
118 |
+
self.query_as_list()
|
119 |
+
|
120 |
+
# Find top n close matches
|
121 |
+
if method == "fuzzy":
|
122 |
+
# Use the fuzzy_string method to get matches and their scores
|
123 |
+
# If the threshold is met, return the best match; otherwise, return all matches meeting the threshold
|
124 |
+
top_matches = self.fuzzy_string(target_string, limit=n, threshold=threshold)
|
125 |
+
|
126 |
+
|
127 |
+
else:
|
128 |
+
# Use difflib's get_close_matches to get the top n matches
|
129 |
+
top_matches = difflib.get_close_matches(target_string, self.response, n=n, cutoff=0.2)
|
130 |
+
|
131 |
+
return top_matches
|
132 |
+
|
133 |
+
def fuzzy_string(self, prompt, limit, threshold=80, low_threshold=30):
|
134 |
+
|
135 |
+
# Get matches and their scores, limited by the specified 'limit'
|
136 |
+
matches = process.extract(prompt, self.response, limit=limit)
|
137 |
+
|
138 |
+
|
139 |
+
filtered_matches = [match for match in matches if match[1] >= threshold]
|
140 |
+
|
141 |
+
# If no matches meet the threshold, return the list of all matches' strings
|
142 |
+
if not filtered_matches:
|
143 |
+
# Return matches above the low_threshold
|
144 |
+
# Fix for wrong properties being returned
|
145 |
+
return [match[0] for match in matches if match[1] >= low_threshold]
|
146 |
+
|
147 |
+
|
148 |
+
# If there's only one match meeting the threshold, return it as a string
|
149 |
+
if len(filtered_matches) == 1:
|
150 |
+
return filtered_matches[0][0] # Return the matched string directly
|
151 |
+
|
152 |
+
# If there's more than one match meeting the threshold or ties, return the list of matches' strings
|
153 |
+
highest_score = filtered_matches[0][1]
|
154 |
+
ties = [match for match in filtered_matches if match[1] == highest_score]
|
155 |
+
|
156 |
+
# Return the strings of tied matches directly, ignoring the scores
|
157 |
+
m = [match[0] for match in ties]
|
158 |
+
if len(m) == 1:
|
159 |
+
return m[0]
|
160 |
+
return [match[0] for match in ties]
|
161 |
+
|
162 |
+
def fetch_pk(self, property_name, property_value):
|
163 |
+
# Some properties do not have a primary key
|
164 |
+
# Return the property value if no primary key is specified
|
165 |
+
pk_list = []
|
166 |
+
|
167 |
+
# Check if the property_value is a list; if not, make it a list for uniform processing
|
168 |
+
if not isinstance(property_value, list):
|
169 |
+
property_value = [property_value]
|
170 |
+
|
171 |
+
# Some properties do not have a primary key
|
172 |
+
# Return None for each property_value if no primary key is specified
|
173 |
+
if self.pk_column is None:
|
174 |
+
return [None for _ in property_value]
|
175 |
+
|
176 |
+
for value in property_value:
|
177 |
+
query = f"SELECT {self.pk_column} FROM {self.table} WHERE {self.column} = '{value}' LIMIT 1"
|
178 |
+
response = self.db.run(query)
|
179 |
+
|
180 |
+
# Append the response (PK or None) to the pk_list
|
181 |
+
pk_list.append(response)
|
182 |
+
|
183 |
+
return pk_list
|
184 |
+
|
185 |
+
|
186 |
+
def setup_retrievers(db, schema_config):
|
187 |
+
# retrievers = {}
|
188 |
+
# for prop, config in schema_config["properties"].items():
|
189 |
+
# retrievers[prop] = Retriever(db=db, config=config)
|
190 |
+
# return retrievers
|
191 |
+
|
192 |
+
retrievers = {}
|
193 |
+
# Iterate over each property in the schema_config's properties
|
194 |
+
for prop, config in schema_config["properties"].items():
|
195 |
+
# Access the 'items' dictionary for the configuration of the array's elements
|
196 |
+
item_config = config['items']
|
197 |
+
# Create a Retriever instance using the item_config
|
198 |
+
retrievers[prop] = Retriever(db=db, config=item_config)
|
199 |
+
return retrievers
|
200 |
+
|
201 |
+
|
202 |
+
def extract_properties(prompt, schema_config, custom_extractor_prompt=None):
|
203 |
+
"""Extract properties from the prompt."""
|
204 |
+
# modify schema_conf to only include the required properties
|
205 |
+
schema_stripped = {'properties': {}}
|
206 |
+
for key, value in schema_config['properties'].items():
|
207 |
+
schema_stripped['properties'][key] = {
|
208 |
+
'type': value['type'],
|
209 |
+
'items': {'type': value['items']['type']}
|
210 |
+
}
|
211 |
+
|
212 |
+
extractor = Extractor(schema_config=schema_stripped, custom_extractor_prompt=custom_extractor_prompt)
|
213 |
+
extraction_result = extractor.extract(prompt)
|
214 |
+
# print("Extraction Result:", extraction_result)
|
215 |
+
|
216 |
+
if 'text' in extraction_result and extraction_result['text']:
|
217 |
+
properties = extraction_result['text']
|
218 |
+
return properties
|
219 |
+
else:
|
220 |
+
print("No properties extracted.")
|
221 |
+
return None
|
222 |
+
|
223 |
+
|
224 |
+
def recheck_property_value(properties, property_name, retrievers, input_func):
|
225 |
+
while True:
|
226 |
+
new_value = input_func(f"Enter new value for {property_name} or type 'quit' to stop: ")
|
227 |
+
if new_value.lower() == 'quit':
|
228 |
+
break # Exit the loop and do not update the property
|
229 |
+
|
230 |
+
new_top_matches = retrievers[property_name].find_close_matches(new_value, n=3)
|
231 |
+
if new_top_matches:
|
232 |
+
# Display new top matches and ask for confirmation or re-entry
|
233 |
+
print("\nNew close matches found:")
|
234 |
+
for i, match in enumerate(new_top_matches, start=1):
|
235 |
+
print(f"[{i}] {match}")
|
236 |
+
print("[4] Re-enter value")
|
237 |
+
print("[5] Quit without updating")
|
238 |
+
|
239 |
+
selection = input_func("Select the best match (1-3), choose 4 to re-enter value, or 5 to quit: ")
|
240 |
+
if selection in ['1', '2', '3']:
|
241 |
+
selected_match = new_top_matches[int(selection) - 1]
|
242 |
+
properties[property_name] = selected_match # Update the dictionary directly
|
243 |
+
print(f"Updated {property_name} to {selected_match}")
|
244 |
+
break # Successfully updated, exit the loop
|
245 |
+
elif selection == '5':
|
246 |
+
break # Quit without updating
|
247 |
+
# Loop will continue if user selects 4 or inputs invalid selection
|
248 |
+
else:
|
249 |
+
print("No close matches found. Please try again or type 'quit' to stop.")
|
250 |
+
|
251 |
+
|
252 |
+
def check_and_update_properties(properties_list, retrievers, method="fuzzy", input_func=input):
|
253 |
+
"""
|
254 |
+
Checks and updates the properties in the properties list based on close matches found in the database.
|
255 |
+
The function iterates through each property in each property dictionary within the list,
|
256 |
+
finds close matches for it in the database using the retrievers, and updates the property
|
257 |
+
value based on user selection.
|
258 |
+
|
259 |
+
Args:
|
260 |
+
properties_list (list of dict): A list of dictionaries, where each dictionary contains properties
|
261 |
+
to check and potentially update based on database matches.
|
262 |
+
retrievers (dict): A dictionary of Retriever objects keyed by property name, used to find close matches in the database.
|
263 |
+
input_func (function, optional): A function to capture user input. Defaults to the built-in input function.
|
264 |
+
|
265 |
+
The function updates the properties_list in place based on user choices for updating property values
|
266 |
+
with close matches found by the retrievers.
|
267 |
+
"""
|
268 |
+
|
269 |
+
for index, properties in enumerate(properties_list):
|
270 |
+
for property_name, retriever in retrievers.items(): # Iterate using items to get both key and value
|
271 |
+
property_values = properties.get(property_name, [])
|
272 |
+
if not property_values: # Skip if the property is not present or is an empty list
|
273 |
+
continue
|
274 |
+
|
275 |
+
updated_property_values = [] # To store updated list of values
|
276 |
+
|
277 |
+
for value in property_values:
|
278 |
+
if retriever.augmented_table:
|
279 |
+
augmented_value = retriever.get_augmented_items(value)
|
280 |
+
if augmented_value:
|
281 |
+
updated_property_values.append(augmented_value)
|
282 |
+
continue
|
283 |
+
# Since property_value is now expected to be a list, we handle each value individually
|
284 |
+
top_matches = retriever.find_close_matches(value, method=method, n=3)
|
285 |
+
|
286 |
+
# Check if the closest match is the same as the current value
|
287 |
+
if top_matches and top_matches[0] == value:
|
288 |
+
updated_property_values.append(value)
|
289 |
+
continue
|
290 |
+
|
291 |
+
if not top_matches:
|
292 |
+
updated_property_values.append(value) # Keep the original value if no matches found
|
293 |
+
continue
|
294 |
+
|
295 |
+
if type(top_matches) == str and method == "fuzzy":
|
296 |
+
# If the top_matches is a string, it means that the threshold was met and only one item was returned
|
297 |
+
# In this case, we can directly update the property with the top match
|
298 |
+
updated_property_values.append(top_matches)
|
299 |
+
properties[property_name] = updated_property_values
|
300 |
+
continue
|
301 |
+
|
302 |
+
print(f"\nCurrent {property_name}: {value}")
|
303 |
+
for i, match in enumerate(top_matches, start=1):
|
304 |
+
print(f"[{i}] {match}")
|
305 |
+
print("[4] Enter new value")
|
306 |
+
|
307 |
+
# hmm = input_func(f"Fix for Pycharm, press enter to continue")
|
308 |
+
|
309 |
+
choice = input_func(f"Select the best match for {property_name} (1-4): ")
|
310 |
+
if choice in ['1', '2', '3']:
|
311 |
+
selected_match = top_matches[int(choice) - 1]
|
312 |
+
updated_property_values.append(selected_match) # Update with the selected match
|
313 |
+
print(f"Updated {property_name} to {selected_match}")
|
314 |
+
elif choice == '4':
|
315 |
+
# Allow re-entry of value for this specific item
|
316 |
+
recheck_property_value(properties, property_name, value, retrievers, input_func)
|
317 |
+
# Note: Implement recheck_property_value to handle individual value updates within the list
|
318 |
+
else:
|
319 |
+
print("Invalid selection. Property not updated.")
|
320 |
+
updated_property_values.append(value) # Keep the original value
|
321 |
+
|
322 |
+
# Update the entire list for the property after processing all values
|
323 |
+
properties[property_name] = updated_property_values
|
324 |
+
|
325 |
+
|
326 |
+
# Function to remove duplicates
|
327 |
+
def remove_duplicates(dicts):
|
328 |
+
seen = {} # Dictionary to keep track of seen values for each key
|
329 |
+
for d in dicts:
|
330 |
+
for key in list(d.keys()): # Use list to avoid RuntimeError for changing dict size during iteration
|
331 |
+
value = d[key]
|
332 |
+
if key in seen and value == seen[key]:
|
333 |
+
del d[key] # Remove key-value pair if duplicate is found
|
334 |
+
else:
|
335 |
+
seen[key] = value # Update seen values for this key
|
336 |
+
return dicts
|
337 |
+
|
338 |
+
|
339 |
+
def fetch_pks(properties_list, retrievers):
|
340 |
+
all_pk_attributes = [] # Initialize a list to store dictionaries of _pk attributes for each item in properties_list
|
341 |
+
|
342 |
+
# Iterate through each properties dictionary in the list
|
343 |
+
for properties in properties_list:
|
344 |
+
pk_attributes = {} # Initialize a dictionary for the current set of properties
|
345 |
+
for property_name, property_value in properties.items():
|
346 |
+
if property_name in retrievers:
|
347 |
+
# Fetch the primary key using the retriever for the current property
|
348 |
+
pk = retrievers[property_name].fetch_pk(property_name, property_value)
|
349 |
+
# Store it in the dictionary with a modified key name
|
350 |
+
pk_attributes[f"{property_name}_pk"] = pk
|
351 |
+
|
352 |
+
# Add the dictionary of _pk attributes for the current set of properties to the list
|
353 |
+
all_pk_attributes.append(pk_attributes)
|
354 |
+
|
355 |
+
# Return a list of dictionaries, where each dictionary contains _pk attributes for a set of properties
|
356 |
+
return all_pk_attributes
|
357 |
+
|
358 |
+
|
359 |
+
def update_prompt(prompt, properties, pk, properties_original):
|
360 |
+
# Replace the original prompt with the updated properties and pk
|
361 |
+
prompt = prompt.replace("{{properties}}", str(properties))
|
362 |
+
prompt = prompt.replace("{{pk}}", str(pk))
|
363 |
+
return prompt
|
364 |
+
|
365 |
+
|
366 |
+
def update_prompt_enhanced(prompt, properties, pk, properties_original):
|
367 |
+
updated_info = ""
|
368 |
+
for prop, pk_info, prop_orig in zip(properties, pk, properties_original):
|
369 |
+
for key in prop.keys():
|
370 |
+
# Extract original and updated values
|
371 |
+
orig_values = prop_orig.get(key, [])
|
372 |
+
updated_values = prop.get(key, [])
|
373 |
+
|
374 |
+
# Ensure both original and updated values are lists for uniform processing
|
375 |
+
if not isinstance(orig_values, list):
|
376 |
+
orig_values = [orig_values]
|
377 |
+
if not isinstance(updated_values, list):
|
378 |
+
updated_values = [updated_values]
|
379 |
+
|
380 |
+
# Extract primary key detail for this key, handling various pk formats carefully
|
381 |
+
pk_key = f"{key}_pk" # Construct pk key name based on the property key
|
382 |
+
pk_details = pk_info.get(pk_key, [])
|
383 |
+
if not isinstance(pk_details, list):
|
384 |
+
pk_details = [pk_details]
|
385 |
+
|
386 |
+
for orig_value, updated_value, pk_detail in zip(orig_values, updated_values, pk_details):
|
387 |
+
pk_value = None
|
388 |
+
if isinstance(pk_detail, str):
|
389 |
+
pk_value = pk_detail.strip("[]()").split(",")[0].replace("'", "").replace('"', '')
|
390 |
+
|
391 |
+
update_statement = ""
|
392 |
+
# Skip updating if there's no change in value to avoid redundant info
|
393 |
+
if orig_value != updated_value and pk_value:
|
394 |
+
update_statement = f"\n- {orig_value} (now referred to as {updated_value}) has a primary key: {pk_value}."
|
395 |
+
elif orig_value != updated_value:
|
396 |
+
update_statement = f"\n- {orig_value} (now referred to as {updated_value})."
|
397 |
+
elif pk_value:
|
398 |
+
update_statement = f"\n- {orig_value} has a primary key: {pk_value}."
|
399 |
+
|
400 |
+
updated_info += update_statement
|
401 |
+
|
402 |
+
if updated_info:
|
403 |
+
prompt += "\nUpdated Information:" + updated_info
|
404 |
+
|
405 |
+
return prompt
|
406 |
+
|
407 |
+
|
408 |
+
def prompt_cleaner(prompt, db, schema_config):
|
409 |
+
"""Main function to clean the prompt."""
|
410 |
+
|
411 |
+
retrievers = setup_retrievers(db, schema_config)
|
412 |
+
|
413 |
+
properties = extract_properties(prompt, schema_config)
|
414 |
+
# Keep original properties for later use
|
415 |
+
properties_original = deepcopy(properties)
|
416 |
+
# Remove duplicates - Happens when there are more than one player or team in the prompt
|
417 |
+
properties = remove_duplicates(properties)
|
418 |
+
if properties:
|
419 |
+
check_and_update_properties(properties, retrievers)
|
420 |
+
|
421 |
+
pk = fetch_pks(properties, retrievers)
|
422 |
+
properties = update_prompt_enhanced(prompt, properties, pk, properties_original)
|
423 |
+
|
424 |
+
return properties, pk
|
425 |
+
|
426 |
+
|
427 |
+
class PromptCleaner:
|
428 |
+
"""
|
429 |
+
A class designed to clean and process prompts by extracting properties, removing duplicates,
|
430 |
+
and updating these properties based on a predefined schema configuration and database interactions.
|
431 |
+
|
432 |
+
Attributes:
|
433 |
+
db: A database connection object used to execute queries and fetch data.
|
434 |
+
schema_config: A dictionary defining the schema configuration for the extraction process.
|
435 |
+
schema_config = {
|
436 |
+
"properties": {
|
437 |
+
# Property name
|
438 |
+
"person_name": {"type": "string", "db_table": "players", "db_column": "name", "pk_column": "hash",
|
439 |
+
# if mostly numeric, such as 2015-2016 set true
|
440 |
+
"numeric": False},
|
441 |
+
"team_name": {"type": "string", "db_table": "teams", "db_column": "name", "pk_column": "id",
|
442 |
+
"numeric": False},
|
443 |
+
# Add more as needed
|
444 |
+
},
|
445 |
+
# Parameter to extractor, if person_name is required, add it here and the extractor will
|
446 |
+
# return an error if it is not found
|
447 |
+
"required": [],
|
448 |
+
}
|
449 |
+
|
450 |
+
Methods:
|
451 |
+
clean(prompt): Cleans the given prompt by extracting and updating properties based on the database.
|
452 |
+
Returns a tuple containing the updated properties and their primary keys.
|
453 |
+
"""
|
454 |
+
|
455 |
+
def __init__(self, db=db, schema_config=None, custom_extractor_prompt=None):
|
456 |
+
"""
|
457 |
+
Initializes the PromptCleaner with a database connection and a schema configuration.
|
458 |
+
|
459 |
+
Args:
|
460 |
+
db: The database connection object to be used for querying. (if none, it will use the default db)
|
461 |
+
schema_config: A dictionary defining properties and their database mappings for extraction and updating.
|
462 |
+
"""
|
463 |
+
self.db = db
|
464 |
+
self.schema_config = schema_config
|
465 |
+
self.retrievers = setup_retrievers(self.db, self.schema_config)
|
466 |
+
self.cust_extractor_prompt = custom_extractor_prompt
|
467 |
+
|
468 |
+
def clean(self, prompt, return_pk=False, test=False, verbose = False):
|
469 |
+
"""
|
470 |
+
Processes the given prompt to extract properties, remove duplicates, update the properties
|
471 |
+
based on close matches within the database, and fetch primary keys for these properties.
|
472 |
+
|
473 |
+
The method first extracts properties from the prompt using the schema configuration,
|
474 |
+
then checks these properties against the database to find and update close matches.
|
475 |
+
It also fetches primary keys for the updated properties where applicable.
|
476 |
+
|
477 |
+
Args:
|
478 |
+
prompt (str): The prompt text to be cleaned and processed.
|
479 |
+
return_pk (bool): A flag to indicate whether to return primary keys along with the properties.
|
480 |
+
test (bool): A flag to indicate whether to return the original properties for testing purposes.
|
481 |
+
verbose (bool): A flag to indicate whether to return the original properties for debugging.
|
482 |
+
|
483 |
+
Returns:
|
484 |
+
tuple: A tuple containing two elements:
|
485 |
+
- The first element is the original prompt, with updated information that excist in the db.
|
486 |
+
- The second element is a list of dictionaries, each containing primary keys for the properties,
|
487 |
+
where applicable.
|
488 |
+
|
489 |
+
"""
|
490 |
+
if self.cust_extractor_prompt:
|
491 |
+
|
492 |
+
properties = extract_properties(prompt, self.schema_config, self.cust_extractor_prompt)
|
493 |
+
|
494 |
+
else:
|
495 |
+
properties = extract_properties(prompt, self.schema_config)
|
496 |
+
# Keep original properties for later use
|
497 |
+
properties_original = deepcopy(properties)
|
498 |
+
if test:
|
499 |
+
return properties_original
|
500 |
+
# Remove duplicates - Happens when there are more than one player or team in the prompt
|
501 |
+
# properties = remove_duplicates(properties)
|
502 |
+
pk = None
|
503 |
+
if properties:
|
504 |
+
check_and_update_properties(properties, self.retrievers)
|
505 |
+
pk = fetch_pks(properties, self.retrievers)
|
506 |
+
properties = update_prompt_enhanced(prompt, properties, pk, properties_original)
|
507 |
+
|
508 |
+
|
509 |
+
|
510 |
+
if return_pk:
|
511 |
+
return properties, pk
|
512 |
+
elif verbose:
|
513 |
+
return properties, properties_original
|
514 |
+
else:
|
515 |
+
return properties
|
516 |
+
|
517 |
+
|
518 |
+
def load_json(file_path: str) -> dict:
|
519 |
+
with open(file_path, 'r') as file:
|
520 |
+
return json.load(file)
|
521 |
+
|
522 |
+
|
523 |
+
def create_extractor(schema: str = "src/conf/schema.json", db: SQLDatabase = db_uri):
|
524 |
+
schema_config = load_json(schema)
|
525 |
+
db = SQLDatabase.from_uri(db)
|
526 |
+
pre_prompt = """Extract and save the relevant entities mentioned \
|
527 |
+
in the following passage together with their properties.
|
528 |
+
|
529 |
+
Only extract the properties mentioned in the 'information_extraction' function.
|
530 |
+
|
531 |
+
The questions are soccer related. game_event are things like yellow cards, goals, assists, freekick ect.
|
532 |
+
Generic properties like, "description", "home team", "away team", "game" ect should NOT be extracted.
|
533 |
+
|
534 |
+
If a property is not present and is not required in the function parameters, do not include it in the output.
|
535 |
+
If no properties are found, return an empty list.
|
536 |
+
|
537 |
+
Here are some exampels:
|
538 |
+
'How many goals did Henry score for Arsnl in the 2015 season?'
|
539 |
+
person_name': ['Henry'], 'team_name': [Arsnl],'year_season': ['2015'],
|
540 |
+
|
541 |
+
Passage:
|
542 |
+
{input}
|
543 |
+
"""
|
544 |
+
|
545 |
+
return PromptCleaner(db, schema_config, custom_extractor_prompt=pre_prompt)
|
546 |
+
|
547 |
+
|
548 |
+
if __name__ == "__main__":
|
549 |
+
|
550 |
+
|
551 |
+
schema_config = load_json("src/conf/schema.json")
|
552 |
+
# Add game and league to the schema_config
|
553 |
+
|
554 |
+
# prompter = PromptCleaner(db, schema_config, custom_extractor_prompt=extract_prompt)
|
555 |
+
prompter = create_extractor("src/conf/schema.json", "sqlite:///data/games.db")
|
556 |
+
prompt= prompter.clean("Give me goals, shots on target, shots off target and corners from the game between ManU and Swansa")
|
557 |
+
|
558 |
+
|
559 |
+
print(prompt)
|
560 |
+
|
main.py
CHANGED
@@ -1,8 +1,15 @@
|
|
1 |
from src.extractor import create_extractor
|
2 |
from src.sql_chain import create_agent
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
ex = create_extractor()
|
4 |
-
ag = create_agent(llm_model=
|
5 |
-
# ag = create_agent(llm_model = "gpt-4-0125-preview")
|
6 |
|
7 |
def query(prompt):
|
8 |
clean = ex.clean(prompt)
|
|
|
1 |
from src.extractor import create_extractor
|
2 |
from src.sql_chain import create_agent
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
ex = create_extractor()
|
7 |
+
load_dotenv(".env")
|
8 |
+
|
9 |
+
model = os.getenv('OPENAI_MODEL')
|
10 |
+
|
11 |
ex = create_extractor()
|
12 |
+
ag = create_agent(llm_model=model)
|
|
|
13 |
|
14 |
def query(prompt):
|
15 |
clean = ex.clean(prompt)
|
main_cli.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from src.extractor import create_extractor
|
2 |
+
from src.sql_chain import create_agent
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
load_dotenv(".env")
|
7 |
+
|
8 |
+
model = os.getenv('OPENAI_MODEL')
|
9 |
+
|
10 |
+
ex = create_extractor()
|
11 |
+
ag = create_agent(llm_model=model)
|
12 |
+
|
13 |
+
|
14 |
+
def query(prompt):
|
15 |
+
clean, ver = ex.clean(prompt, verbose=True)
|
16 |
+
ans, ver = ag.ask(clean)
|
17 |
+
return ans
|
18 |
+
|
19 |
+
if __name__ == '__main__':
|
20 |
+
import argparse
|
21 |
+
|
22 |
+
parser = argparse.ArgumentParser(description="Process a user query.")
|
23 |
+
parser.add_argument('-q', '--query', type=str, required=True, help='A query string to process')
|
24 |
+
|
25 |
+
args = parser.parse_args()
|
26 |
+
ans = query(args.query)
|
27 |
+
print(ans["output"])
|
media/chainlit.png
ADDED
requirements.txt
CHANGED
@@ -10,5 +10,7 @@ rapidfuzz==3.6.1
|
|
10 |
thefuzz==0.22.1
|
11 |
faiss-cpu
|
12 |
Levenshtein==0.25.0
|
13 |
-
langsmith~=0.
|
14 |
python-dotenv==1.0.1
|
|
|
|
|
|
10 |
thefuzz==0.22.1
|
11 |
faiss-cpu
|
12 |
Levenshtein==0.25.0
|
13 |
+
langsmith~=0.0.92
|
14 |
python-dotenv==1.0.1
|
15 |
+
chainlit~=1.0.506
|
16 |
+
pandas
|
src/database.py
CHANGED
@@ -4,7 +4,7 @@ import pandas as pd
|
|
4 |
import os
|
5 |
import json
|
6 |
|
7 |
-
engine = create_engine('sqlite
|
8 |
Base = declarative_base()
|
9 |
|
10 |
|
@@ -25,6 +25,7 @@ class Game(Base):
|
|
25 |
season = Column(String)
|
26 |
league_id = Column(Integer, ForeignKey('leagues.id'))
|
27 |
|
|
|
28 |
class GameLineup(Base):
|
29 |
__tablename__ = 'game_lineup'
|
30 |
id = Column(Integer, primary_key=True)
|
@@ -46,6 +47,7 @@ class Team(Base):
|
|
46 |
id = Column(Integer, primary_key=True)
|
47 |
name = Column(String)
|
48 |
|
|
|
49 |
class Player(Base):
|
50 |
__tablename__ = 'players'
|
51 |
hash = Column(String, primary_key=True)
|
@@ -75,11 +77,13 @@ class Commentary(Base):
|
|
75 |
event_time_end = Column(Float)
|
76 |
description = Column(Text)
|
77 |
|
|
|
78 |
class League(Base):
|
79 |
__tablename__ = 'leagues'
|
80 |
id = Column(Integer, primary_key=True)
|
81 |
name = Column(String)
|
82 |
|
|
|
83 |
class Event(Base):
|
84 |
__tablename__ = 'events'
|
85 |
id = Column(Integer, primary_key=True)
|
@@ -92,36 +96,36 @@ class Event(Base):
|
|
92 |
label = Column(String)
|
93 |
visibility = Column(Boolean)
|
94 |
|
|
|
95 |
class Augmented_Team(Base):
|
96 |
__tablename__ = 'augmented_teams'
|
97 |
id = Column(Integer, primary_key=True)
|
98 |
team_id = Column(Integer, ForeignKey('teams.id'))
|
99 |
augmented_name = Column(String)
|
100 |
|
|
|
101 |
class Augmented_League(Base):
|
102 |
__tablename__ = 'augmented_leagues'
|
103 |
id = Column(Integer, primary_key=True)
|
104 |
league_id = Column(Integer, ForeignKey('leagues.id'))
|
105 |
augmented_name = Column(String)
|
106 |
|
|
|
107 |
class Player_Event_Label(Base):
|
108 |
__tablename__ = 'player_event_labels'
|
109 |
id = Column(Integer, primary_key=True)
|
110 |
label = Column(String)
|
111 |
|
|
|
112 |
class Player_Event(Base):
|
113 |
__tablename__ = 'player_events'
|
114 |
id = Column(Integer, primary_key=True)
|
115 |
game_id = Column(Integer, ForeignKey('games.id'))
|
116 |
player_id = Column(Integer, ForeignKey('players.hash'))
|
117 |
-
time = Column(String)
|
118 |
type = Column(Integer, ForeignKey('player_event_labels.id'))
|
119 |
-
linked_player = Column(Integer, ForeignKey(
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
|
126 |
|
127 |
# Create Tables
|
@@ -130,11 +134,13 @@ Base.metadata.create_all(engine)
|
|
130 |
# Session setup
|
131 |
Session = sessionmaker(bind=engine)
|
132 |
|
133 |
-
|
|
|
134 |
# Extract the time from the string
|
135 |
-
time = time.split("'")[0]
|
136 |
return time
|
137 |
|
|
|
138 |
def get_or_create(session, model, **kwargs):
|
139 |
instance = session.query(model).filter_by(**kwargs).first()
|
140 |
if instance:
|
@@ -145,7 +151,8 @@ def get_or_create(session, model, **kwargs):
|
|
145 |
session.commit()
|
146 |
return instance
|
147 |
|
148 |
-
|
|
|
149 |
session = Session()
|
150 |
# Caption = d and v2 = d2
|
151 |
home_team = data["gameHomeTeam"]
|
@@ -169,7 +176,8 @@ def process_game_data(data,data2, league, season):
|
|
169 |
# Check if league exists
|
170 |
league = get_or_create(session, League, name=league)
|
171 |
if not game:
|
172 |
-
game = Game(timestamp=timestamp, score=score, goal_home=home_score, goal_away=away_score, round=round_,
|
|
|
173 |
venue=venue, date=date, attendance=attendance, season=season, league_id=league.id, referee=referee)
|
174 |
session.add(game)
|
175 |
session.commit()
|
@@ -187,22 +195,19 @@ def process_game_data(data,data2, league, season):
|
|
187 |
for player_data in team_lineup["players"]:
|
188 |
player_hash = player_data["hash"]
|
189 |
name = player_data["long_name"]
|
190 |
-
if " " not in name:
|
191 |
name = "NULL " + name
|
192 |
number = player_data["shirt_number"]
|
193 |
captain = player_data["captain"] == "(C)"
|
194 |
starting = player_data["starting"]
|
195 |
country = player_data["country"]
|
196 |
position = player_data["lineup"]
|
197 |
-
facts = player_data.get("facts", None)
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
|
203 |
player = get_or_create(session, Player, hash=player_hash, name=name, country=country)
|
204 |
game_lineup = GameLineup(game_id=game.id, team_id=team_id, player_id=player.hash,
|
205 |
-
shirt_number=number, position=position, starting=starting, captain=captain,
|
|
|
206 |
if facts:
|
207 |
for fact in facts:
|
208 |
type = fact["type"]
|
@@ -210,7 +215,8 @@ def process_game_data(data,data2, league, season):
|
|
210 |
event = get_or_create(session, Player_Event_Label, id=int(type))
|
211 |
linked_player = fact.get("linked_player_hash", None)
|
212 |
|
213 |
-
player_event = Player_Event(game_id=game.id, player_id=player.hash, time=time, type=event.id,
|
|
|
214 |
session.add(player_event)
|
215 |
session.add(game_lineup)
|
216 |
|
@@ -223,7 +229,8 @@ def process_game_data(data,data2, league, season):
|
|
223 |
coach_country = coach["country"]
|
224 |
coach_player = get_or_create(session, Player, hash=coach_hash, name=coach_name, country=coach_country)
|
225 |
game_lineup = GameLineup(game_id=game.id, team_id=team_id, player_id=coach_player.hash,
|
226 |
-
shirt_number=None, position=None, starting=None, captain=False, coach=True,
|
|
|
227 |
session.add(game_lineup)
|
228 |
|
229 |
# Commit all changes at once
|
@@ -241,7 +248,7 @@ def process_game_data(data,data2, league, season):
|
|
241 |
label = "yellow card"
|
242 |
elif label == "r-card":
|
243 |
label = "red card"
|
244 |
-
|
245 |
description = event["description"]
|
246 |
important = event["important"] == "true"
|
247 |
visible = event["visibility"]
|
@@ -257,9 +264,11 @@ def process_game_data(data,data2, league, season):
|
|
257 |
|
258 |
return game.id, home_team.id, away_team.id
|
259 |
|
|
|
260 |
def process_player_data(data):
|
261 |
pass
|
262 |
|
|
|
263 |
def process_ASR_data(data, game_id, period):
|
264 |
session = Session()
|
265 |
seg = data["segments"]
|
@@ -277,6 +286,7 @@ def process_ASR_data(data, game_id, period):
|
|
277 |
session.commit()
|
278 |
session.close()
|
279 |
|
|
|
280 |
def convert_to_seconds(time_str):
|
281 |
# Split the string into its components
|
282 |
period, time = time_str.split(" - ")
|
@@ -321,17 +331,14 @@ def parse_labels_v2(data, session, home_team_id, away_team_id, game_id):
|
|
321 |
game_time=game_time, # Already in seconds
|
322 |
frame_stamp=position, # Make sure this is an integer or None
|
323 |
team_id=team_id, # Integer ID of the team
|
324 |
-
visibility=visibility,
|
325 |
-
label=label
|
326 |
)
|
327 |
session.add(annotation_entry)
|
328 |
|
329 |
session.commit()
|
330 |
|
331 |
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
def process_json_files(directory):
|
336 |
session = Session()
|
337 |
fill_player_events(session)
|
@@ -355,7 +362,7 @@ def process_json_files(directory):
|
|
355 |
lb_cap = json.load(f)
|
356 |
with open(os.path.join(root, "Labels-v2.json"), 'r') as f:
|
357 |
lb_v2 = json.load(f)
|
358 |
-
game_id, home_team_id, away_team_id = process_game_data(lb_cap,lb_v2, league, season)
|
359 |
|
360 |
for file in asr_files:
|
361 |
with open(os.path.join(root, file), 'r') as f:
|
@@ -368,19 +375,18 @@ def process_json_files(directory):
|
|
368 |
elif '1_half-ASR' in file:
|
369 |
period = 1
|
370 |
# Parse and commit the data
|
371 |
-
process_ASR_data(data=asr, game_id
|
372 |
|
373 |
elif '2_half-ASR' in file:
|
374 |
period = 2
|
375 |
# Parse and commit the data
|
376 |
-
process_ASR_data(data=asr, game_id
|
377 |
-
|
378 |
|
379 |
session.commit()
|
380 |
session.close()
|
381 |
|
382 |
-
def fill_player_events(session):
|
383 |
|
|
|
384 |
fact_id2label = {
|
385 |
"1": "Yellow card",
|
386 |
# Example: "time": "71' Ivanovic B. (Unsportsmanlike conduct)", "description": "Yellow Card"
|
@@ -397,9 +403,7 @@ def fill_player_events(session):
|
|
397 |
session.commit()
|
398 |
|
399 |
|
400 |
-
|
401 |
def fill_Augmented_Team(file_path):
|
402 |
-
|
403 |
df = pd.read_csv(file_path)
|
404 |
# the df should have two columns, team_name and augmented_name
|
405 |
|
@@ -417,6 +421,7 @@ def fill_Augmented_Team(file_path):
|
|
417 |
session.commit()
|
418 |
session.close()
|
419 |
|
|
|
420 |
def fill_Augmented_League(file_path):
|
421 |
# Read the csv file
|
422 |
df = pd.read_csv(file_path)
|
@@ -432,14 +437,16 @@ def fill_Augmented_League(file_path):
|
|
432 |
augmented_name = augmented_name.strip()
|
433 |
league = session.query(League).filter_by(name=league_name).first()
|
434 |
if league:
|
435 |
-
augmented_league = get_or_create(session, Augmented_League, league_id=league.id,
|
|
|
436 |
session.commit()
|
437 |
session.close()
|
438 |
|
|
|
439 |
if __name__ == "__main__":
|
440 |
# Example directory path
|
441 |
-
process_json_files('../data/Dataset/
|
442 |
-
fill_Augmented_Team('../data/
|
443 |
-
fill_Augmented_League('../data/
|
444 |
# Rename the event/annotation table to something more descriptive. Events are fucking everything else over
|
445 |
|
|
|
4 |
import os
|
5 |
import json
|
6 |
|
7 |
+
engine = create_engine('sqlite:///../data/games.db', echo=False)
|
8 |
Base = declarative_base()
|
9 |
|
10 |
|
|
|
25 |
season = Column(String)
|
26 |
league_id = Column(Integer, ForeignKey('leagues.id'))
|
27 |
|
28 |
+
|
29 |
class GameLineup(Base):
|
30 |
__tablename__ = 'game_lineup'
|
31 |
id = Column(Integer, primary_key=True)
|
|
|
47 |
id = Column(Integer, primary_key=True)
|
48 |
name = Column(String)
|
49 |
|
50 |
+
|
51 |
class Player(Base):
|
52 |
__tablename__ = 'players'
|
53 |
hash = Column(String, primary_key=True)
|
|
|
77 |
event_time_end = Column(Float)
|
78 |
description = Column(Text)
|
79 |
|
80 |
+
|
81 |
class League(Base):
|
82 |
__tablename__ = 'leagues'
|
83 |
id = Column(Integer, primary_key=True)
|
84 |
name = Column(String)
|
85 |
|
86 |
+
|
87 |
class Event(Base):
|
88 |
__tablename__ = 'events'
|
89 |
id = Column(Integer, primary_key=True)
|
|
|
96 |
label = Column(String)
|
97 |
visibility = Column(Boolean)
|
98 |
|
99 |
+
|
100 |
class Augmented_Team(Base):
|
101 |
__tablename__ = 'augmented_teams'
|
102 |
id = Column(Integer, primary_key=True)
|
103 |
team_id = Column(Integer, ForeignKey('teams.id'))
|
104 |
augmented_name = Column(String)
|
105 |
|
106 |
+
|
107 |
class Augmented_League(Base):
|
108 |
__tablename__ = 'augmented_leagues'
|
109 |
id = Column(Integer, primary_key=True)
|
110 |
league_id = Column(Integer, ForeignKey('leagues.id'))
|
111 |
augmented_name = Column(String)
|
112 |
|
113 |
+
|
114 |
class Player_Event_Label(Base):
|
115 |
__tablename__ = 'player_event_labels'
|
116 |
id = Column(Integer, primary_key=True)
|
117 |
label = Column(String)
|
118 |
|
119 |
+
|
120 |
class Player_Event(Base):
|
121 |
__tablename__ = 'player_events'
|
122 |
id = Column(Integer, primary_key=True)
|
123 |
game_id = Column(Integer, ForeignKey('games.id'))
|
124 |
player_id = Column(Integer, ForeignKey('players.hash'))
|
125 |
+
time = Column(String) # Time in minutes of the game
|
126 |
type = Column(Integer, ForeignKey('player_event_labels.id'))
|
127 |
+
linked_player = Column(Integer, ForeignKey(
|
128 |
+
'players.hash')) # If the event is linked to another player, for example a substitution
|
|
|
|
|
|
|
|
|
129 |
|
130 |
|
131 |
# Create Tables
|
|
|
134 |
# Session setup
|
135 |
Session = sessionmaker(bind=engine)
|
136 |
|
137 |
+
|
138 |
+
def extract_time_from_player_event(time: str) -> str:
|
139 |
# Extract the time from the string
|
140 |
+
time = time.split("'")[0] # Need to keep it str because of overtime eg. (45+2)
|
141 |
return time
|
142 |
|
143 |
+
|
144 |
def get_or_create(session, model, **kwargs):
|
145 |
instance = session.query(model).filter_by(**kwargs).first()
|
146 |
if instance:
|
|
|
151 |
session.commit()
|
152 |
return instance
|
153 |
|
154 |
+
|
155 |
+
def process_game_data(data, data2, league, season):
|
156 |
session = Session()
|
157 |
# Caption = d and v2 = d2
|
158 |
home_team = data["gameHomeTeam"]
|
|
|
176 |
# Check if league exists
|
177 |
league = get_or_create(session, League, name=league)
|
178 |
if not game:
|
179 |
+
game = Game(timestamp=timestamp, score=score, goal_home=home_score, goal_away=away_score, round=round_,
|
180 |
+
home_team_id=home_team.id, away_team_id=away_team.id,
|
181 |
venue=venue, date=date, attendance=attendance, season=season, league_id=league.id, referee=referee)
|
182 |
session.add(game)
|
183 |
session.commit()
|
|
|
195 |
for player_data in team_lineup["players"]:
|
196 |
player_hash = player_data["hash"]
|
197 |
name = player_data["long_name"]
|
198 |
+
if " " not in name: # Since some players are missing their first name, do this to help with the search
|
199 |
name = "NULL " + name
|
200 |
number = player_data["shirt_number"]
|
201 |
captain = player_data["captain"] == "(C)"
|
202 |
starting = player_data["starting"]
|
203 |
country = player_data["country"]
|
204 |
position = player_data["lineup"]
|
205 |
+
facts = player_data.get("facts", None) # Facts might be empty
|
|
|
|
|
|
|
|
|
206 |
|
207 |
player = get_or_create(session, Player, hash=player_hash, name=name, country=country)
|
208 |
game_lineup = GameLineup(game_id=game.id, team_id=team_id, player_id=player.hash,
|
209 |
+
shirt_number=number, position=position, starting=starting, captain=captain,
|
210 |
+
coach=False, tactics=tactic)
|
211 |
if facts:
|
212 |
for fact in facts:
|
213 |
type = fact["type"]
|
|
|
215 |
event = get_or_create(session, Player_Event_Label, id=int(type))
|
216 |
linked_player = fact.get("linked_player_hash", None)
|
217 |
|
218 |
+
player_event = Player_Event(game_id=game.id, player_id=player.hash, time=time, type=event.id,
|
219 |
+
linked_player=linked_player)
|
220 |
session.add(player_event)
|
221 |
session.add(game_lineup)
|
222 |
|
|
|
229 |
coach_country = coach["country"]
|
230 |
coach_player = get_or_create(session, Player, hash=coach_hash, name=coach_name, country=coach_country)
|
231 |
game_lineup = GameLineup(game_id=game.id, team_id=team_id, player_id=coach_player.hash,
|
232 |
+
shirt_number=None, position=None, starting=None, captain=False, coach=True,
|
233 |
+
tactics=tactic)
|
234 |
session.add(game_lineup)
|
235 |
|
236 |
# Commit all changes at once
|
|
|
248 |
label = "yellow card"
|
249 |
elif label == "r-card":
|
250 |
label = "red card"
|
251 |
+
|
252 |
description = event["description"]
|
253 |
important = event["important"] == "true"
|
254 |
visible = event["visibility"]
|
|
|
264 |
|
265 |
return game.id, home_team.id, away_team.id
|
266 |
|
267 |
+
|
268 |
def process_player_data(data):
|
269 |
pass
|
270 |
|
271 |
+
|
272 |
def process_ASR_data(data, game_id, period):
|
273 |
session = Session()
|
274 |
seg = data["segments"]
|
|
|
286 |
session.commit()
|
287 |
session.close()
|
288 |
|
289 |
+
|
290 |
def convert_to_seconds(time_str):
|
291 |
# Split the string into its components
|
292 |
period, time = time_str.split(" - ")
|
|
|
331 |
game_time=game_time, # Already in seconds
|
332 |
frame_stamp=position, # Make sure this is an integer or None
|
333 |
team_id=team_id, # Integer ID of the team
|
334 |
+
visibility=visibility, # Boolean
|
335 |
+
label=label # String with information
|
336 |
)
|
337 |
session.add(annotation_entry)
|
338 |
|
339 |
session.commit()
|
340 |
|
341 |
|
|
|
|
|
|
|
342 |
def process_json_files(directory):
|
343 |
session = Session()
|
344 |
fill_player_events(session)
|
|
|
362 |
lb_cap = json.load(f)
|
363 |
with open(os.path.join(root, "Labels-v2.json"), 'r') as f:
|
364 |
lb_v2 = json.load(f)
|
365 |
+
game_id, home_team_id, away_team_id = process_game_data(lb_cap, lb_v2, league, season)
|
366 |
|
367 |
for file in asr_files:
|
368 |
with open(os.path.join(root, file), 'r') as f:
|
|
|
375 |
elif '1_half-ASR' in file:
|
376 |
period = 1
|
377 |
# Parse and commit the data
|
378 |
+
process_ASR_data(data=asr, game_id=game_id, period=period)
|
379 |
|
380 |
elif '2_half-ASR' in file:
|
381 |
period = 2
|
382 |
# Parse and commit the data
|
383 |
+
process_ASR_data(data=asr, game_id=game_id, period=period)
|
|
|
384 |
|
385 |
session.commit()
|
386 |
session.close()
|
387 |
|
|
|
388 |
|
389 |
+
def fill_player_events(session):
|
390 |
fact_id2label = {
|
391 |
"1": "Yellow card",
|
392 |
# Example: "time": "71' Ivanovic B. (Unsportsmanlike conduct)", "description": "Yellow Card"
|
|
|
403 |
session.commit()
|
404 |
|
405 |
|
|
|
406 |
def fill_Augmented_Team(file_path):
|
|
|
407 |
df = pd.read_csv(file_path)
|
408 |
# the df should have two columns, team_name and augmented_name
|
409 |
|
|
|
421 |
session.commit()
|
422 |
session.close()
|
423 |
|
424 |
+
|
425 |
def fill_Augmented_League(file_path):
|
426 |
# Read the csv file
|
427 |
df = pd.read_csv(file_path)
|
|
|
437 |
augmented_name = augmented_name.strip()
|
438 |
league = session.query(League).filter_by(name=league_name).first()
|
439 |
if league:
|
440 |
+
augmented_league = get_or_create(session, Augmented_League, league_id=league.id,
|
441 |
+
augmented_name=augmented_name)
|
442 |
session.commit()
|
443 |
session.close()
|
444 |
|
445 |
+
|
446 |
if __name__ == "__main__":
|
447 |
# Example directory path
|
448 |
+
process_json_files('../data/Dataset/SN-ASR_captions_and_actions/')
|
449 |
+
fill_Augmented_Team('../data/Dataset/augmented_teams.csv')
|
450 |
+
fill_Augmented_League('../data/Dataset/augmented_leagues.csv')
|
451 |
# Rename the event/annotation table to something more descriptive. Events are fucking everything else over
|
452 |
|
src/extractor.py
CHANGED
@@ -32,13 +32,16 @@ if os.getenv('LANGSMITH'):
|
|
32 |
os.environ['LANGCHAIN_ENDPOINT'] = 'https://api.smith.langchain.com'
|
33 |
os.environ[
|
34 |
'LANGCHAIN_API_KEY'] = os.getenv("LANGSMITH_API_KEY")
|
35 |
-
os.environ['LANGCHAIN_PROJECT'] = '
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
# from langchain_anthropic import ChatAnthropic
|
39 |
class Extractor():
|
40 |
# llm = ChatOpenAI(model_name="gpt-4-0125-preview", temperature=0)
|
41 |
-
#gpt-3.5-turbo
|
42 |
def __init__(self, model="gpt-3.5-turbo-0125", schema_config=None, custom_extractor_prompt=None):
|
43 |
# model = "gpt-4-0125-preview"
|
44 |
if custom_extractor_prompt:
|
@@ -133,7 +136,6 @@ class Retriever():
|
|
133 |
# Get matches and their scores, limited by the specified 'limit'
|
134 |
matches = process.extract(prompt, self.response, limit=limit)
|
135 |
|
136 |
-
|
137 |
filtered_matches = [match for match in matches if match[1] >= threshold]
|
138 |
|
139 |
# If no matches meet the threshold, return the list of all matches' strings
|
@@ -142,7 +144,6 @@ class Retriever():
|
|
142 |
# Fix for wrong properties being returned
|
143 |
return [match[0] for match in matches if match[1] >= low_threshold]
|
144 |
|
145 |
-
|
146 |
# If there's only one match meeting the threshold, return it as a string
|
147 |
if len(filtered_matches) == 1:
|
148 |
return filtered_matches[0][0] # Return the matched string directly
|
@@ -247,7 +248,7 @@ def recheck_property_value(properties, property_name, retrievers, input_func):
|
|
247 |
print("No close matches found. Please try again or type 'quit' to stop.")
|
248 |
|
249 |
|
250 |
-
def check_and_update_properties(properties_list, retrievers, method="fuzzy", input_func=input):
|
251 |
"""
|
252 |
Checks and updates the properties in the properties list based on close matches found in the database.
|
253 |
The function iterates through each property in each property dictionary within the list,
|
@@ -263,7 +264,7 @@ def check_and_update_properties(properties_list, retrievers, method="fuzzy", inp
|
|
263 |
The function updates the properties_list in place based on user choices for updating property values
|
264 |
with close matches found by the retrievers.
|
265 |
"""
|
266 |
-
|
267 |
for index, properties in enumerate(properties_list):
|
268 |
for property_name, retriever in retrievers.items(): # Iterate using items to get both key and value
|
269 |
property_values = properties.get(property_name, [])
|
@@ -279,7 +280,11 @@ def check_and_update_properties(properties_list, retrievers, method="fuzzy", inp
|
|
279 |
updated_property_values.append(augmented_value)
|
280 |
continue
|
281 |
# Since property_value is now expected to be a list, we handle each value individually
|
282 |
-
|
|
|
|
|
|
|
|
|
283 |
|
284 |
# Check if the closest match is the same as the current value
|
285 |
if top_matches and top_matches[0] == value:
|
@@ -296,30 +301,38 @@ def check_and_update_properties(properties_list, retrievers, method="fuzzy", inp
|
|
296 |
updated_property_values.append(top_matches)
|
297 |
properties[property_name] = updated_property_values
|
298 |
continue
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
|
|
|
|
|
|
319 |
|
320 |
# Update the entire list for the property after processing all values
|
321 |
properties[property_name] = updated_property_values
|
322 |
|
|
|
|
|
|
|
|
|
|
|
323 |
|
324 |
# Function to remove duplicates
|
325 |
def remove_duplicates(dicts):
|
@@ -354,18 +367,21 @@ def fetch_pks(properties_list, retrievers):
|
|
354 |
return all_pk_attributes
|
355 |
|
356 |
|
357 |
-
def update_prompt(prompt, properties, pk, properties_original):
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
|
363 |
|
364 |
-
def
|
365 |
updated_info = ""
|
366 |
for prop, pk_info, prop_orig in zip(properties, pk, properties_original):
|
367 |
for key in prop.keys():
|
368 |
# Extract original and updated values
|
|
|
|
|
|
|
369 |
orig_values = prop_orig.get(key, [])
|
370 |
updated_values = prop.get(key, [])
|
371 |
|
@@ -391,9 +407,13 @@ def update_prompt_enhanced(prompt, properties, pk, properties_original):
|
|
391 |
if orig_value != updated_value and pk_value:
|
392 |
update_statement = f"\n- {orig_value} (now referred to as {updated_value}) has a primary key: {pk_value}."
|
393 |
elif orig_value != updated_value:
|
394 |
-
update_statement = f"\n- {orig_value} (now referred to as {updated_value}
|
395 |
elif pk_value:
|
396 |
update_statement = f"\n- {orig_value} has a primary key: {pk_value}."
|
|
|
|
|
|
|
|
|
397 |
|
398 |
updated_info += update_statement
|
399 |
|
@@ -417,7 +437,7 @@ def prompt_cleaner(prompt, db, schema_config):
|
|
417 |
check_and_update_properties(properties, retrievers)
|
418 |
|
419 |
pk = fetch_pks(properties, retrievers)
|
420 |
-
properties =
|
421 |
|
422 |
return properties, pk
|
423 |
|
@@ -462,8 +482,9 @@ class PromptCleaner:
|
|
462 |
self.schema_config = schema_config
|
463 |
self.retrievers = setup_retrievers(self.db, self.schema_config)
|
464 |
self.cust_extractor_prompt = custom_extractor_prompt
|
|
|
465 |
|
466 |
-
def clean(self, prompt, return_pk=False, test=False, verbose
|
467 |
"""
|
468 |
Processes the given prompt to extract properties, remove duplicates, update the properties
|
469 |
based on close matches within the database, and fetch primary keys for these properties.
|
@@ -493,24 +514,50 @@ class PromptCleaner:
|
|
493 |
properties = extract_properties(prompt, self.schema_config)
|
494 |
# Keep original properties for later use
|
495 |
properties_original = deepcopy(properties)
|
|
|
496 |
if test:
|
497 |
return properties_original
|
498 |
# Remove duplicates - Happens when there are more than one player or team in the prompt
|
499 |
# properties = remove_duplicates(properties)
|
500 |
pk = None
|
|
|
501 |
if properties:
|
502 |
check_and_update_properties(properties, self.retrievers)
|
503 |
pk = fetch_pks(properties, self.retrievers)
|
504 |
-
properties =
|
505 |
-
|
506 |
|
507 |
-
|
508 |
-
if return_pk:
|
|
|
|
|
509 |
return properties, pk
|
510 |
elif verbose:
|
511 |
return properties, properties_original
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
512 |
else:
|
513 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
514 |
|
515 |
|
516 |
def load_json(file_path: str) -> dict:
|
@@ -518,24 +565,24 @@ def load_json(file_path: str) -> dict:
|
|
518 |
return json.load(file)
|
519 |
|
520 |
|
521 |
-
def create_extractor(schema: str = "src/conf/schema.json", db: SQLDatabase =
|
522 |
schema_config = load_json(schema)
|
523 |
db = SQLDatabase.from_uri(db)
|
524 |
pre_prompt = """Extract and save the relevant entities mentioned \
|
525 |
in the following passage together with their properties.
|
526 |
-
|
527 |
Only extract the properties mentioned in the 'information_extraction' function.
|
528 |
-
|
529 |
The questions are soccer related. game_event are things like yellow cards, goals, assists, freekick ect.
|
530 |
Generic properties like, "description", "home team", "away team", "game" ect should NOT be extracted.
|
531 |
-
|
532 |
If a property is not present and is not required in the function parameters, do not include it in the output.
|
533 |
If no properties are found, return an empty list.
|
534 |
-
|
535 |
Here are some exampels:
|
536 |
'How many goals did Henry score for Arsnl in the 2015 season?'
|
537 |
person_name': ['Henry'], 'team_name': [Arsnl],'year_season': ['2015'],
|
538 |
-
|
539 |
Passage:
|
540 |
{input}
|
541 |
"""
|
@@ -544,15 +591,19 @@ def create_extractor(schema: str = "src/conf/schema.json", db: SQLDatabase = "sq
|
|
544 |
|
545 |
|
546 |
if __name__ == "__main__":
|
547 |
-
|
548 |
-
|
549 |
schema_config = load_json("src/conf/schema.json")
|
550 |
# Add game and league to the schema_config
|
551 |
|
552 |
# prompter = PromptCleaner(db, schema_config, custom_extractor_prompt=extract_prompt)
|
553 |
prompter = create_extractor("src/conf/schema.json", "sqlite:///data/games.db")
|
554 |
-
prompt= prompter.clean(
|
555 |
-
|
556 |
|
557 |
print(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
558 |
|
|
|
32 |
os.environ['LANGCHAIN_ENDPOINT'] = 'https://api.smith.langchain.com'
|
33 |
os.environ[
|
34 |
'LANGCHAIN_API_KEY'] = os.getenv("LANGSMITH_API_KEY")
|
35 |
+
os.environ['LANGCHAIN_PROJECT'] = os.getenv('LANGSMITH_PROJECT')
|
36 |
+
db_uri = os.getenv('DATABASE_PATH')
|
37 |
+
db_uri = f"sqlite:///{db_uri}"
|
38 |
+
db = SQLDatabase.from_uri(db_uri)
|
39 |
+
|
40 |
|
41 |
# from langchain_anthropic import ChatAnthropic
|
42 |
class Extractor():
|
43 |
# llm = ChatOpenAI(model_name="gpt-4-0125-preview", temperature=0)
|
44 |
+
# gpt-3.5-turbo
|
45 |
def __init__(self, model="gpt-3.5-turbo-0125", schema_config=None, custom_extractor_prompt=None):
|
46 |
# model = "gpt-4-0125-preview"
|
47 |
if custom_extractor_prompt:
|
|
|
136 |
# Get matches and their scores, limited by the specified 'limit'
|
137 |
matches = process.extract(prompt, self.response, limit=limit)
|
138 |
|
|
|
139 |
filtered_matches = [match for match in matches if match[1] >= threshold]
|
140 |
|
141 |
# If no matches meet the threshold, return the list of all matches' strings
|
|
|
144 |
# Fix for wrong properties being returned
|
145 |
return [match[0] for match in matches if match[1] >= low_threshold]
|
146 |
|
|
|
147 |
# If there's only one match meeting the threshold, return it as a string
|
148 |
if len(filtered_matches) == 1:
|
149 |
return filtered_matches[0][0] # Return the matched string directly
|
|
|
248 |
print("No close matches found. Please try again or type 'quit' to stop.")
|
249 |
|
250 |
|
251 |
+
def check_and_update_properties(properties_list, retrievers, method="fuzzy", input_func="input"):
|
252 |
"""
|
253 |
Checks and updates the properties in the properties list based on close matches found in the database.
|
254 |
The function iterates through each property in each property dictionary within the list,
|
|
|
264 |
The function updates the properties_list in place based on user choices for updating property values
|
265 |
with close matches found by the retrievers.
|
266 |
"""
|
267 |
+
return_list = []
|
268 |
for index, properties in enumerate(properties_list):
|
269 |
for property_name, retriever in retrievers.items(): # Iterate using items to get both key and value
|
270 |
property_values = properties.get(property_name, [])
|
|
|
280 |
updated_property_values.append(augmented_value)
|
281 |
continue
|
282 |
# Since property_value is now expected to be a list, we handle each value individually
|
283 |
+
if input_func == "chainlit":
|
284 |
+
n = 5
|
285 |
+
else:
|
286 |
+
n = 3
|
287 |
+
top_matches = retriever.find_close_matches(value, method=method, n=n)
|
288 |
|
289 |
# Check if the closest match is the same as the current value
|
290 |
if top_matches and top_matches[0] == value:
|
|
|
301 |
updated_property_values.append(top_matches)
|
302 |
properties[property_name] = updated_property_values
|
303 |
continue
|
304 |
+
if input_func == "input":
|
305 |
+
print(f"\nCurrent {property_name}: {value}")
|
306 |
+
for i, match in enumerate(top_matches, start=1):
|
307 |
+
print(f"[{i}] {match}")
|
308 |
+
print("[4] Enter new value")
|
309 |
+
|
310 |
+
# hmm = input(f"Fix for Pycharm, press enter to continue")
|
311 |
+
|
312 |
+
choice = input(f"Select the best match for {property_name} (1-4): ")
|
313 |
+
if choice in ['1', '2', '3']:
|
314 |
+
selected_match = top_matches[int(choice) - 1]
|
315 |
+
updated_property_values.append(selected_match) # Update with the selected match
|
316 |
+
print(f"Updated {property_name} to {selected_match}")
|
317 |
+
elif choice == '4':
|
318 |
+
# Allow re-entry of value for this specific item
|
319 |
+
recheck_property_value(properties, property_name, value, retrievers, input_func)
|
320 |
+
# Note: Implement recheck_property_value to handle individual value updates within the list
|
321 |
+
else:
|
322 |
+
print("Invalid selection. Property not updated.")
|
323 |
+
updated_property_values.append(value) # Keep the original value
|
324 |
+
elif input_func == "chainlit": # If we use UI, just return the list of top matches, and then let the user select
|
325 |
+
options = {property_name: value, "top_matches": top_matches}
|
326 |
+
return_list.append(options)
|
327 |
|
328 |
# Update the entire list for the property after processing all values
|
329 |
properties[property_name] = updated_property_values
|
330 |
|
331 |
+
if input_func == "chainlit":
|
332 |
+
return properties, return_list
|
333 |
+
else:
|
334 |
+
return properties
|
335 |
+
|
336 |
|
337 |
# Function to remove duplicates
|
338 |
def remove_duplicates(dicts):
|
|
|
367 |
return all_pk_attributes
|
368 |
|
369 |
|
370 |
+
# def update_prompt(prompt, properties, pk, properties_original):
|
371 |
+
# # Replace the original prompt with the updated properties and pk
|
372 |
+
# prompt = prompt.replace("{{properties}}", str(properties))
|
373 |
+
# prompt = prompt.replace("{{pk}}", str(pk))
|
374 |
+
# return prompt
|
375 |
|
376 |
|
377 |
+
def update_prompt(prompt, properties, pk, properties_original, retrievers):
|
378 |
updated_info = ""
|
379 |
for prop, pk_info, prop_orig in zip(properties, pk, properties_original):
|
380 |
for key in prop.keys():
|
381 |
# Extract original and updated values
|
382 |
+
if key in retrievers:
|
383 |
+
# Fetch the primary key using the retriever for the current property
|
384 |
+
table = retrievers[key].table
|
385 |
orig_values = prop_orig.get(key, [])
|
386 |
updated_values = prop.get(key, [])
|
387 |
|
|
|
407 |
if orig_value != updated_value and pk_value:
|
408 |
update_statement = f"\n- {orig_value} (now referred to as {updated_value}) has a primary key: {pk_value}."
|
409 |
elif orig_value != updated_value:
|
410 |
+
update_statement = f"\n- {orig_value} (now referred to as {updated_value}."
|
411 |
elif pk_value:
|
412 |
update_statement = f"\n- {orig_value} has a primary key: {pk_value}."
|
413 |
+
elif orig_value == updated_value and pk_value:
|
414 |
+
update_statement = f"\n- {orig_value} has a primary key: {pk_value}."
|
415 |
+
elif orig_value == updated_value:
|
416 |
+
update_statement = f"\n- {orig_value}."
|
417 |
|
418 |
updated_info += update_statement
|
419 |
|
|
|
437 |
check_and_update_properties(properties, retrievers)
|
438 |
|
439 |
pk = fetch_pks(properties, retrievers)
|
440 |
+
properties = update_prompt(prompt, properties, pk, properties_original)
|
441 |
|
442 |
return properties, pk
|
443 |
|
|
|
482 |
self.schema_config = schema_config
|
483 |
self.retrievers = setup_retrievers(self.db, self.schema_config)
|
484 |
self.cust_extractor_prompt = custom_extractor_prompt
|
485 |
+
self.properties_original = None
|
486 |
|
487 |
+
def clean(self, prompt, return_pk=False, test=False, verbose=False):
|
488 |
"""
|
489 |
Processes the given prompt to extract properties, remove duplicates, update the properties
|
490 |
based on close matches within the database, and fetch primary keys for these properties.
|
|
|
514 |
properties = extract_properties(prompt, self.schema_config)
|
515 |
# Keep original properties for later use
|
516 |
properties_original = deepcopy(properties)
|
517 |
+
|
518 |
if test:
|
519 |
return properties_original
|
520 |
# Remove duplicates - Happens when there are more than one player or team in the prompt
|
521 |
# properties = remove_duplicates(properties)
|
522 |
pk = None
|
523 |
+
# VALIDATE PROPERTIES
|
524 |
if properties:
|
525 |
check_and_update_properties(properties, self.retrievers)
|
526 |
pk = fetch_pks(properties, self.retrievers)
|
527 |
+
properties = update_prompt(prompt=prompt, properties=properties, pk=pk, properties_original=properties_original,
|
528 |
+
retrievers=self.retrievers)
|
529 |
|
530 |
+
# Prepare additional data if requested
|
531 |
+
if return_pk and verbose:
|
532 |
+
return (properties, pk), (properties, properties_original)
|
533 |
+
elif return_pk:
|
534 |
return properties, pk
|
535 |
elif verbose:
|
536 |
return properties, properties_original
|
537 |
+
|
538 |
+
return properties
|
539 |
+
|
540 |
+
def extract_chainlit(self, prompt):
|
541 |
+
if self.cust_extractor_prompt:
|
542 |
+
|
543 |
+
properties = extract_properties(prompt, self.schema_config, self.cust_extractor_prompt)
|
544 |
+
|
545 |
else:
|
546 |
+
properties = extract_properties(prompt, self.schema_config)
|
547 |
+
self.properties_original = deepcopy(properties)
|
548 |
+
return properties
|
549 |
+
|
550 |
+
def validate_chainlit(self, properties):
|
551 |
+
properties, need_val = check_and_update_properties(properties, self.retrievers, input_func="chainlit")
|
552 |
+
return properties, need_val
|
553 |
+
|
554 |
+
def build_prompt_chainlit(self, properties, prompt):
|
555 |
+
pk = None
|
556 |
+
# self.properties_original= deepcopy(properties)
|
557 |
+
if properties:
|
558 |
+
pk = fetch_pks(properties, self.retrievers)
|
559 |
+
prompt_new = update_prompt(prompt, properties, pk, self.properties_original, self.retrievers)
|
560 |
+
return prompt_new
|
561 |
|
562 |
|
563 |
def load_json(file_path: str) -> dict:
|
|
|
565 |
return json.load(file)
|
566 |
|
567 |
|
568 |
+
def create_extractor(schema: str = "src/conf/schema.json", db: SQLDatabase = db_uri):
|
569 |
schema_config = load_json(schema)
|
570 |
db = SQLDatabase.from_uri(db)
|
571 |
pre_prompt = """Extract and save the relevant entities mentioned \
|
572 |
in the following passage together with their properties.
|
573 |
+
|
574 |
Only extract the properties mentioned in the 'information_extraction' function.
|
575 |
+
|
576 |
The questions are soccer related. game_event are things like yellow cards, goals, assists, freekick ect.
|
577 |
Generic properties like, "description", "home team", "away team", "game" ect should NOT be extracted.
|
578 |
+
|
579 |
If a property is not present and is not required in the function parameters, do not include it in the output.
|
580 |
If no properties are found, return an empty list.
|
581 |
+
|
582 |
Here are some exampels:
|
583 |
'How many goals did Henry score for Arsnl in the 2015 season?'
|
584 |
person_name': ['Henry'], 'team_name': [Arsnl],'year_season': ['2015'],
|
585 |
+
|
586 |
Passage:
|
587 |
{input}
|
588 |
"""
|
|
|
591 |
|
592 |
|
593 |
if __name__ == "__main__":
|
|
|
|
|
594 |
schema_config = load_json("src/conf/schema.json")
|
595 |
# Add game and league to the schema_config
|
596 |
|
597 |
# prompter = PromptCleaner(db, schema_config, custom_extractor_prompt=extract_prompt)
|
598 |
prompter = create_extractor("src/conf/schema.json", "sqlite:///data/games.db")
|
599 |
+
prompt = prompter.clean(
|
600 |
+
"Give me goals, shots on target, shots off target and corners from the game between ManU and Swansa and Manchester City")
|
601 |
|
602 |
print(prompt)
|
603 |
+
# ex = create_extractor()
|
604 |
+
#
|
605 |
+
# val_list = [{'person_name': ['Cristiano Ronaldo'], 'team_name': ['Manchester City']}]
|
606 |
+
# user_prompt = "Did ronaldo play for city?"
|
607 |
+
# p = ex.build_prompt_chainlit(val_list, user_prompt)
|
608 |
+
# print(p)
|
609 |
|
src/sql_chain.py
CHANGED
@@ -29,7 +29,7 @@ if os.getenv('LANGSMITH'):
|
|
29 |
os.environ['LANGCHAIN_ENDPOINT'] = 'https://api.smith.langchain.com'
|
30 |
os.environ[
|
31 |
'LANGCHAIN_API_KEY'] = os.getenv("LANGSMITH_API_KEY")
|
32 |
-
os.environ['LANGCHAIN_PROJECT'] = '
|
33 |
|
34 |
|
35 |
def load_json(file_path: str) -> dict:
|
@@ -38,7 +38,8 @@ def load_json(file_path: str) -> dict:
|
|
38 |
|
39 |
|
40 |
class SqlChain:
|
41 |
-
def __init__(self, few_shot_prompts: str, llm_model="gpt-3.5-turbo", db_uri="sqlite:///data/games.db",
|
|
|
42 |
self.llm = ChatOpenAI(model=llm_model, temperature=0)
|
43 |
self.db = SQLDatabase.from_uri(db_uri)
|
44 |
self.few_shot_k = few_shot_k
|
@@ -50,13 +51,12 @@ class SqlChain:
|
|
50 |
db=self.db,
|
51 |
prompt=self.full_prompt,
|
52 |
max_iterations=10,
|
53 |
-
verbose=
|
54 |
agent_type="openai-tools",
|
55 |
# Default to 10 examples - Can be overwritten with the prompt
|
56 |
top_k=30,
|
57 |
)
|
58 |
|
59 |
-
|
60 |
def _set_up_few_shot_prompts(self, few_shot_prompts: dict) -> None:
|
61 |
few_shots = SemanticSimilarityExampleSelector.from_examples(
|
62 |
few_shot_prompts,
|
@@ -68,6 +68,7 @@ class SqlChain:
|
|
68 |
return few_shots
|
69 |
|
70 |
def few_prompt_construct(self, query: str, top_k=5, dialect="SQLite") -> str:
|
|
|
71 |
system_prefix = """You are an agent designed to interact with a SQL database.
|
72 |
Given an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.
|
73 |
ALWAYS query the database before returning an answer.
|
@@ -77,7 +78,7 @@ class SqlChain:
|
|
77 |
You have access to tools for interacting with the database.
|
78 |
Only use the given tools. Only use the information returned by the tools to construct your final answer.
|
79 |
You MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again.
|
80 |
-
|
81 |
DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database.
|
82 |
|
83 |
If the question does not seem related to the database, just return 'I don't know' as the answer.
|
@@ -86,10 +87,17 @@ class SqlChain:
|
|
86 |
Here are some examples of user inputs and their corresponding SQL queries. They are tested and works.
|
87 |
Use them as a guide when creating your own queries:"""
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
SUFFIX = """Begin!
|
90 |
|
91 |
Question: {input}
|
92 |
-
Thought: I should look at the
|
|
|
93 |
I will not stop until I query the database and return the answer.
|
94 |
{agent_scratchpad}"""
|
95 |
|
@@ -117,6 +125,7 @@ class SqlChain:
|
|
117 |
"agent_scratchpad": [],
|
118 |
}
|
119 |
)
|
|
|
120 |
def prompt_no_few_shot(self, query: str, dialect="SQLite") -> str:
|
121 |
system_prefix = """You are an agent designed to interact with a SQL database.
|
122 |
Given an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.
|
@@ -134,10 +143,22 @@ class SqlChain:
|
|
134 |
|
135 |
return f"{system_prefix}\n{query}"
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
if few_prompt:
|
142 |
self.few_prompt_construct(query)
|
143 |
return self.agent.invoke({"input": self.full_prompt}), self.full_prompt
|
@@ -146,15 +167,19 @@ class SqlChain:
|
|
146 |
return self.agent.invoke(self.prompt_no_few_shot(query)), self.prompt_no_few_shot(query)
|
147 |
|
148 |
|
149 |
-
|
150 |
-
|
151 |
def create_agent(few_shot_prompts: str = "src/conf/sqls.json", llm_model="gpt-3.5-turbo-0125",
|
152 |
-
db_uri="
|
153 |
""" Create an agent with the given few_shot_prompts, llm_model and db_uri
|
154 |
Call it with agent.ask(prompt)"""
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
|
158 |
if __name__ == "__main__":
|
159 |
chain = SqlChain("src/conf/sqls.json")
|
160 |
-
chain.ask("Is Manchester United in the database?",
|
|
|
29 |
os.environ['LANGCHAIN_ENDPOINT'] = 'https://api.smith.langchain.com'
|
30 |
os.environ[
|
31 |
'LANGCHAIN_API_KEY'] = os.getenv("LANGSMITH_API_KEY")
|
32 |
+
os.environ['LANGCHAIN_PROJECT'] = os.getenv('LANGSMITH_PROJECT')
|
33 |
|
34 |
|
35 |
def load_json(file_path: str) -> dict:
|
|
|
38 |
|
39 |
|
40 |
class SqlChain:
|
41 |
+
def __init__(self, few_shot_prompts: str, llm_model="gpt-3.5-turbo", db_uri="sqlite:///data/games.db",
|
42 |
+
few_shot_k=2):
|
43 |
self.llm = ChatOpenAI(model=llm_model, temperature=0)
|
44 |
self.db = SQLDatabase.from_uri(db_uri)
|
45 |
self.few_shot_k = few_shot_k
|
|
|
51 |
db=self.db,
|
52 |
prompt=self.full_prompt,
|
53 |
max_iterations=10,
|
54 |
+
verbose=True,
|
55 |
agent_type="openai-tools",
|
56 |
# Default to 10 examples - Can be overwritten with the prompt
|
57 |
top_k=30,
|
58 |
)
|
59 |
|
|
|
60 |
def _set_up_few_shot_prompts(self, few_shot_prompts: dict) -> None:
|
61 |
few_shots = SemanticSimilarityExampleSelector.from_examples(
|
62 |
few_shot_prompts,
|
|
|
68 |
return few_shots
|
69 |
|
70 |
def few_prompt_construct(self, query: str, top_k=5, dialect="SQLite") -> str:
|
71 |
+
|
72 |
system_prefix = """You are an agent designed to interact with a SQL database.
|
73 |
Given an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.
|
74 |
ALWAYS query the database before returning an answer.
|
|
|
78 |
You have access to tools for interacting with the database.
|
79 |
Only use the given tools. Only use the information returned by the tools to construct your final answer.
|
80 |
You MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again.
|
81 |
+
|
82 |
DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database.
|
83 |
|
84 |
If the question does not seem related to the database, just return 'I don't know' as the answer.
|
|
|
87 |
Here are some examples of user inputs and their corresponding SQL queries. They are tested and works.
|
88 |
Use them as a guide when creating your own queries:"""
|
89 |
|
90 |
+
# SUFFIX = """Begin!
|
91 |
+
#
|
92 |
+
# Question: {input}
|
93 |
+
# Thought: I should look at the tables in the database to see what I can query. Then I should query the schema of the most relevant tables.
|
94 |
+
# I will not stop until I query the database and return the answer.
|
95 |
+
# {agent_scratchpad}"""
|
96 |
SUFFIX = """Begin!
|
97 |
|
98 |
Question: {input}
|
99 |
+
Thought: I should look at the examples provided and see if I can use them to identify tables and how to build the query.
|
100 |
+
Then I should query the schema of the most relevant tables.
|
101 |
I will not stop until I query the database and return the answer.
|
102 |
{agent_scratchpad}"""
|
103 |
|
|
|
125 |
"agent_scratchpad": [],
|
126 |
}
|
127 |
)
|
128 |
+
|
129 |
def prompt_no_few_shot(self, query: str, dialect="SQLite") -> str:
|
130 |
system_prefix = """You are an agent designed to interact with a SQL database.
|
131 |
Given an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.
|
|
|
143 |
|
144 |
return f"{system_prefix}\n{query}"
|
145 |
|
146 |
+
def ask(self, query: str, few_prompt: bool = True, rag_test=False) -> str:
|
147 |
+
if rag_test:
|
148 |
+
self.few_prompt_construct(query)
|
149 |
+
# Alter the self.full_prompt to only include whats added by the RAG system
|
150 |
+
# Get content in self.full_prompt[messages][0][content]
|
151 |
+
prompt = self.full_prompt.messages
|
152 |
+
prompt = prompt[0].content
|
153 |
+
|
154 |
+
prompt = prompt.split("Use them as a guide when creating your own queries:\n\n")[1]
|
155 |
+
# Then remove everything after \n\nBegin!\n\n
|
156 |
+
prompt = prompt.split("\n\nBegin!\n\n")[0]
|
157 |
+
# Lets split it to a list. One element for each "User input: {input}\nSQL query: {query}"
|
158 |
+
prompt = prompt.split("User input: ")
|
159 |
+
# Then remove the first element
|
160 |
+
prompt = prompt[1:]
|
161 |
+
return prompt
|
162 |
if few_prompt:
|
163 |
self.few_prompt_construct(query)
|
164 |
return self.agent.invoke({"input": self.full_prompt}), self.full_prompt
|
|
|
167 |
return self.agent.invoke(self.prompt_no_few_shot(query)), self.prompt_no_few_shot(query)
|
168 |
|
169 |
|
|
|
|
|
170 |
def create_agent(few_shot_prompts: str = "src/conf/sqls.json", llm_model="gpt-3.5-turbo-0125",
|
171 |
+
db_uri="config", few_shot_k=2):
|
172 |
""" Create an agent with the given few_shot_prompts, llm_model and db_uri
|
173 |
Call it with agent.ask(prompt)"""
|
174 |
+
if db_uri == "config":
|
175 |
+
db_uri = os.getenv('DATABASE_PATH')
|
176 |
+
db_uri = f"sqlite:///{db_uri}"
|
177 |
+
# print(db_uri)
|
178 |
+
# print("sqlite:///data/games.db")
|
179 |
+
# exit(0)
|
180 |
+
return SqlChain(few_shot_prompts, llm_model, db_uri, few_shot_k)
|
181 |
|
182 |
|
183 |
if __name__ == "__main__":
|
184 |
chain = SqlChain("src/conf/sqls.json")
|
185 |
+
chain.ask("Is Manchester United in the database?", rag_test=True)
|