File size: 3,299 Bytes
d9a8fa1
 
 
 
 
8a96862
d9a8fa1
 
 
 
 
 
 
 
 
 
 
 
70c01fa
d9a8fa1
 
70c01fa
d9a8fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
### 1. Imports and class names setup ### 
import gradio as gr
import os
import torch
from transformers import BertTokenizer, BertModel, BertConfig
from transformers import BertForSequenceClassification
# from model import create_effnetb2_model
from timeit import default_timer as timer
# from typing import Tuple, Dict

# Setup class names
# class_names = ["pizza", "steak", "sushi"]

### 2. Model and transforms preparation ###
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased',
                                          do_lower_case=True)
# Create BERT model
model = BertForSequenceClassification.from_pretrained("bert-base-uncased",
                                                      num_labels=2,
                                                      output_attentions=False,
                                                      output_hidden_states=False)
model.load_state_dict(torch.load(f='finetuned_BERT_epoch_10.model', map_location=torch.device('cpu')))
### 3. Predict function ###

# Create predict function
def predict(text) :
    """Transforms and performs a prediction on Text.
    """
    # Start the timer
    start_time = timer()
    encoding = tokenizer.encode_plus(
            text,
            None,
            add_special_tokens=True,
            max_length=256,
            pad_to_max_length=True,
            return_token_type_ids=True,
            return_tensors='pt'
        )
    
    model.eval()

    loss_val_total = 0
    predictions = []
    # batch = tuple(prediction)

    inputs = {'input_ids':      encoding["input_ids"],
            'attention_mask':   encoding["attention_mask"],
                 }

    with torch.no_grad():
        outputs = model(**inputs)

    print(outputs)
    # loss = outputs[0]
    logits = outputs[0]
    # loss_val_total += loss.item()

    logits = logits.detach().cpu().numpy()
    # print(logits)
    # label_ids = inputs['labels'].cpu().numpy()
    predictions.append(logits)
        # true_vals.append(label_ids)

    # loss_val_avg = loss_val_total/len(dataloader_val)

    predictions = np.concatenate(predictions, axis=0)
    
    preds_flat = np.argmax(predictions, axis=1).flatten()

    if preds_flat==0:
      prediction = "positive"
    else:
      prediction = "negative"
    
    # Calculate the prediction time
    pred_time = round(timer() - start_time, 5)
    
    # Return the prediction dictionary and prediction time 
    return prediction, pred_time

### 4. Gradio app ###

# Create title, description and article strings
title = "Sentiment Analysis"
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."

# Create examples list from "examples/" directory
# example_list = [["examples/" + example] for example in os.listdir("examples")]

# Create the Gradio demo
demo = gr.Interface(fn=predict, # mapping function from input to output
                    inputs=["text", "checkbox"],
                    outputs=["text", 
                             gr.Number(label="Prediction time (s)")],
                    # Create examples list from "examples/" directory
                    # examples=example_list, 
                    title=title,
                    description=description)

# Launch the demo!
demo.launch()