Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,102 +0,0 @@
|
|
1 |
-
### 1. Imports and class names setup ###
|
2 |
-
import gradio as gr
|
3 |
-
import os
|
4 |
-
import torch
|
5 |
-
from transformers import BertTokenizer, BertModel, BertConfig
|
6 |
-
from transformers import BertForSequenceClassification
|
7 |
-
# from model import create_effnetb2_model
|
8 |
-
from timeit import default_timer as timer
|
9 |
-
# from typing import Tuple, Dict
|
10 |
-
|
11 |
-
# Setup class names
|
12 |
-
# class_names = ["pizza", "steak", "sushi"]
|
13 |
-
|
14 |
-
### 2. Model and transforms preparation ###
|
15 |
-
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased',
|
16 |
-
do_lower_case=True)
|
17 |
-
# Create BERT model
|
18 |
-
model = BertForSequenceClassification.from_pretrained("bert-base-uncased",
|
19 |
-
num_labels=2,
|
20 |
-
output_attentions=False,
|
21 |
-
output_hidden_states=False)
|
22 |
-
model.load_state_dict(torch.load(f='finetuned_BERT_epoch_10.model', map_location=torch.device('cpu')))
|
23 |
-
### 3. Predict function ###
|
24 |
-
|
25 |
-
# Create predict function
|
26 |
-
def predict(text) :
|
27 |
-
"""Transforms and performs a prediction on Text.
|
28 |
-
"""
|
29 |
-
# Start the timer
|
30 |
-
start_time = timer()
|
31 |
-
encoding = tokenizer.encode_plus(
|
32 |
-
text,
|
33 |
-
None,
|
34 |
-
add_special_tokens=True,
|
35 |
-
max_length=256,
|
36 |
-
pad_to_max_length=True,
|
37 |
-
return_token_type_ids=True,
|
38 |
-
return_tensors='pt'
|
39 |
-
)
|
40 |
-
|
41 |
-
model.eval()
|
42 |
-
|
43 |
-
loss_val_total = 0
|
44 |
-
predictions = []
|
45 |
-
# batch = tuple(prediction)
|
46 |
-
|
47 |
-
inputs = {'input_ids': encoding["input_ids"],
|
48 |
-
'attention_mask': encoding["attention_mask"],
|
49 |
-
}
|
50 |
-
|
51 |
-
with torch.no_grad():
|
52 |
-
outputs = model(**inputs)
|
53 |
-
|
54 |
-
print(outputs)
|
55 |
-
# loss = outputs[0]
|
56 |
-
logits = outputs[0]
|
57 |
-
# loss_val_total += loss.item()
|
58 |
-
|
59 |
-
logits = logits.detach().cpu().numpy()
|
60 |
-
# print(logits)
|
61 |
-
# label_ids = inputs['labels'].cpu().numpy()
|
62 |
-
predictions.append(logits)
|
63 |
-
# true_vals.append(label_ids)
|
64 |
-
|
65 |
-
# loss_val_avg = loss_val_total/len(dataloader_val)
|
66 |
-
|
67 |
-
predictions = np.concatenate(predictions, axis=0)
|
68 |
-
|
69 |
-
preds_flat = np.argmax(predictions, axis=1).flatten()
|
70 |
-
|
71 |
-
if preds_flat==0:
|
72 |
-
prediction = "positive"
|
73 |
-
else:
|
74 |
-
prediction = "negative"
|
75 |
-
|
76 |
-
# Calculate the prediction time
|
77 |
-
pred_time = round(timer() - start_time, 5)
|
78 |
-
|
79 |
-
# Return the prediction dictionary and prediction time
|
80 |
-
return prediction, pred_time
|
81 |
-
|
82 |
-
### 4. Gradio app ###
|
83 |
-
|
84 |
-
# Create title, description and article strings
|
85 |
-
title = "Sentiment Analysis"
|
86 |
-
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
|
87 |
-
|
88 |
-
# Create examples list from "examples/" directory
|
89 |
-
# example_list = [["examples/" + example] for example in os.listdir("examples")]
|
90 |
-
|
91 |
-
# Create the Gradio demo
|
92 |
-
demo = gr.Interface(fn=predict, # mapping function from input to output
|
93 |
-
inputs=["text", "checkbox"],
|
94 |
-
outputs=["text",
|
95 |
-
gr.Number(label="Prediction time (s)")],
|
96 |
-
# Create examples list from "examples/" directory
|
97 |
-
# examples=example_list,
|
98 |
-
title=title,
|
99 |
-
description=description)
|
100 |
-
|
101 |
-
# Launch the demo!
|
102 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|