Spaces:
Runtime error
Runtime error
Commit
·
dbd58af
1
Parent(s):
07c72b0
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,184 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
from IPython.display import display
|
3 |
+
import torch as th
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
from glide_text2im.download import load_checkpoint
|
7 |
+
from glide_text2im.model_creation import (
|
8 |
+
create_model_and_diffusion,
|
9 |
+
model_and_diffusion_defaults,
|
10 |
+
model_and_diffusion_defaults_upsampler
|
11 |
+
)
|
12 |
+
# This notebook supports both CPU and GPU.
|
13 |
+
# On CPU, generating one sample may take on the order of 20 minutes.
|
14 |
+
# On a GPU, it should be under a minute.
|
15 |
+
|
16 |
+
has_cuda = th.cuda.is_available()
|
17 |
+
device = th.device('cpu' if not has_cuda else 'cuda')
|
18 |
+
print('Using device:', device)
|
19 |
+
|
20 |
+
# Create base model.
|
21 |
+
options = model_and_diffusion_defaults()
|
22 |
+
options['use_fp16'] = has_cuda
|
23 |
+
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
|
24 |
+
model, diffusion = create_model_and_diffusion(**options)
|
25 |
+
model.eval()
|
26 |
+
if has_cuda:
|
27 |
+
model.convert_to_fp16()
|
28 |
+
model.to(device)
|
29 |
+
model.load_state_dict(load_checkpoint('base', device))
|
30 |
+
print('total base parameters', sum(x.numel() for x in model.parameters()))
|
31 |
+
# Create upsampler model.
|
32 |
+
options_up = model_and_diffusion_defaults_upsampler()
|
33 |
+
options_up['use_fp16'] = has_cuda
|
34 |
+
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
|
35 |
+
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
36 |
+
model_up.eval()
|
37 |
+
if has_cuda:
|
38 |
+
model_up.convert_to_fp16()
|
39 |
+
model_up.to(device)
|
40 |
+
model_up.load_state_dict(load_checkpoint('upsample', device))
|
41 |
+
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
42 |
+
|
43 |
+
def show_images(batch: th.Tensor):
|
44 |
+
""" Display a batch of images inline. """
|
45 |
+
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
|
46 |
+
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
47 |
+
#display(Image.fromarray(reshaped.numpy()))
|
48 |
+
#Image.fromarray(reshaped.numpy()).save('image.png')
|
49 |
+
|
50 |
+
|
51 |
+
def get_images(batch: th.Tensor):
|
52 |
+
""" Display a batch of images inline. """
|
53 |
+
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
|
54 |
+
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
55 |
+
img = Image.fromarray(reshaped.numpy())
|
56 |
+
#img.save('img.png')
|
57 |
+
return img
|
58 |
+
|
59 |
+
# Sampling parameters
|
60 |
+
batch_size = 1
|
61 |
+
guidance_scale = 3.0
|
62 |
+
|
63 |
+
# Tune this parameter to control the sharpness of 256x256 images.
|
64 |
+
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
65 |
+
upsample_temp = 0.997
|
66 |
+
|
67 |
+
|
68 |
+
# Create a classifier-free guidance sampling function
|
69 |
+
def model_fn(x_t, ts, **kwargs):
|
70 |
+
half = x_t[: len(x_t) // 2]
|
71 |
+
combined = th.cat([half, half], dim=0)
|
72 |
+
model_out = model(combined, ts, **kwargs)
|
73 |
+
eps, rest = model_out[:, :3], model_out[:, 3:]
|
74 |
+
cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
|
75 |
+
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
76 |
+
eps = th.cat([half_eps, half_eps], dim=0)
|
77 |
+
return th.cat([eps, rest], dim=1)
|
78 |
+
|
79 |
+
def run(prompt):
|
80 |
+
|
81 |
+
##############################
|
82 |
+
# Sample from the base model #
|
83 |
+
##############################
|
84 |
+
|
85 |
+
# Create the text tokens to feed to the model.
|
86 |
+
tokens = model.tokenizer.encode(prompt)
|
87 |
+
tokens, mask = model.tokenizer.padded_tokens_and_mask(
|
88 |
+
tokens, options['text_ctx']
|
89 |
+
)
|
90 |
+
|
91 |
+
# Create the classifier-free guidance tokens (empty)
|
92 |
+
full_batch_size = batch_size * 2
|
93 |
+
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
|
94 |
+
[], options['text_ctx']
|
95 |
+
)
|
96 |
+
|
97 |
+
# Pack the tokens together into model kwargs.
|
98 |
+
model_kwargs = dict(
|
99 |
+
tokens=th.tensor(
|
100 |
+
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device
|
101 |
+
),
|
102 |
+
mask=th.tensor(
|
103 |
+
[mask] * batch_size + [uncond_mask] * batch_size,
|
104 |
+
dtype=th.bool,
|
105 |
+
device=device,
|
106 |
+
),
|
107 |
+
)
|
108 |
+
|
109 |
+
|
110 |
+
print('run():')
|
111 |
+
|
112 |
+
# Sample from the base model.
|
113 |
+
print(' # Sample from the base model.')
|
114 |
+
model.del_cache()
|
115 |
+
samples = diffusion.p_sample_loop(
|
116 |
+
model_fn,
|
117 |
+
(full_batch_size, 3, options["image_size"], options["image_size"]),
|
118 |
+
device=device,
|
119 |
+
clip_denoised=True,
|
120 |
+
progress=True,
|
121 |
+
model_kwargs=model_kwargs,
|
122 |
+
cond_fn=None,
|
123 |
+
)[:batch_size]
|
124 |
+
model.del_cache()
|
125 |
+
|
126 |
+
# Show the output
|
127 |
+
print(' # Show the output')
|
128 |
+
#show_images(samples)
|
129 |
+
##############################
|
130 |
+
# Upsample the 64x64 samples #
|
131 |
+
##############################
|
132 |
+
|
133 |
+
tokens = model_up.tokenizer.encode(prompt)
|
134 |
+
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
|
135 |
+
tokens, options_up['text_ctx']
|
136 |
+
)
|
137 |
+
|
138 |
+
# Create the model conditioning dict.
|
139 |
+
print(' # Create the model conditioning dict.')
|
140 |
+
model_kwargs = dict(
|
141 |
+
# Low-res image to upsample.
|
142 |
+
low_res=((samples+1)*127.5).round()/127.5 - 1,
|
143 |
+
|
144 |
+
# Text tokens
|
145 |
+
tokens=th.tensor(
|
146 |
+
[tokens] * batch_size, device=device
|
147 |
+
),
|
148 |
+
mask=th.tensor(
|
149 |
+
[mask] * batch_size,
|
150 |
+
dtype=th.bool,
|
151 |
+
device=device,
|
152 |
+
),
|
153 |
+
)
|
154 |
+
|
155 |
+
# Sample from the base model.
|
156 |
+
print(' # Sample from the base model.')
|
157 |
+
model_up.del_cache()
|
158 |
+
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
|
159 |
+
up_samples = diffusion_up.ddim_sample_loop(
|
160 |
+
model_up,
|
161 |
+
up_shape,
|
162 |
+
noise=th.randn(up_shape, device=device) * upsample_temp,
|
163 |
+
device=device,
|
164 |
+
clip_denoised=True,
|
165 |
+
progress=True,
|
166 |
+
model_kwargs=model_kwargs,
|
167 |
+
cond_fn=None,
|
168 |
+
)[:batch_size]
|
169 |
+
model_up.del_cache()
|
170 |
+
|
171 |
+
# Show the output
|
172 |
+
print('# Show the output')
|
173 |
+
out_images = get_images(up_samples)
|
174 |
+
|
175 |
+
return out_images
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
iface = gr.Interface(
|
181 |
+
fn=run,
|
182 |
+
inputs=["text"],
|
183 |
+
outputs=["image"])
|
184 |
+
iface.launch()
|