File size: 8,692 Bytes
41896b8 03d78db 8a507f6 2ed9a54 8a507f6 03d78db 2ed9a54 03d78db 2ed9a54 03d78db 2ed9a54 8a507f6 41896b8 5bdc506 41896b8 8a507f6 41896b8 5bdc506 2ed9a54 41896b8 2ed9a54 41896b8 2ed9a54 41896b8 5bdc506 41896b8 2ed9a54 41896b8 2ed9a54 41896b8 2ed9a54 8a507f6 2ed9a54 5bdc506 2ed9a54 8a507f6 2ed9a54 8a507f6 41896b8 08b1e0a 2f95349 41896b8 8a507f6 41896b8 8a507f6 41896b8 8a507f6 41896b8 8a507f6 df3805e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objs as go
# Load the CSV file
# file = "brick_kiln_lucknow_v1.csv" # Replace with the correct path to your CSV file
# Dropdown to select the location
location = st.selectbox("Select Location", ["Lucknow", "Delhi", "Ahmedabad"])
# Determine the file path based on selection
if location == "Lucknow":
file = "brick_kiln_lucknow_v1.csv"
center_lat, center_lon = 26.8467, 80.9462
elif location == "Delhi":
file = "brick_kiln_delhi_v1.csv"
center_lat, center_lon = 28.7041, 77.1025
else: # Ahmedabad
file = "brick_kiln_ahmedabad_v2.csv" # Replace with the actual path
center_lat, center_lon = 23.0225, 72.5714
data = pd.read_csv(file)
# Streamlit app title
st.markdown("<h2 style='text-align: center;'>Brick Kiln Location and Conversion Visualization</h2>", unsafe_allow_html=True)
# Slider to select the year
year_selected = st.slider("Select the Year", min_value=int(data["Year made"].min()), max_value=int(data["Year made"].max()), value=int(data["Year made"].min()), step=1)
filtered_data = data[data["Year made"] <= year_selected]
# # Calculate the change in fcbk to zigzag by checking the 'fcb to zigzag' column
filtered_data["Conversion"] = filtered_data.apply(
lambda row: "Converted" if row["Year made"] != row["fcb to zigzag"] else "No Conversion", axis=1
)
# Function to determine the status of each kiln based on the selected year
def get_status(row, year_selected):
if row["fcb to zigzag"]==2009:
return "fcbk"
elif year_selected == row["fcb to zigzag"]:
return "converted"
else:
return "zigzag"
# Function to classify each kiln based on the selected year
def classify_kiln(row, year_selected):
if row["Year made"] > year_selected:
return None # Kiln not yet made
elif row["fcb to zigzag"] > year_selected:
return "FCBK" # Kiln still FCBK
else:
return "Zigzag" # Kiln has converted to Zigzag
# Apply classification to the data based on the selected year
data["Status1"] = data.apply(lambda row: classify_kiln(row, year_selected), axis=1)
fcbk_count = data[data["Status1"] == "FCBK"].shape[0]
zigzag_count = data[data["Status1"] == "Zigzag"].shape[0]
# Apply the status function to each row
data["Status"] = data.apply(lambda row: get_status(row, year_selected), axis=1)
filtered_data_conv = data[data["Year made"] <= year_selected]
filtered_data_conv["Type"] = filtered_data_conv["Type"].map({0: "fcbk", 1: "zigzag"})
filtered_data["Type"] = filtered_data["Type"].map({0: "fcbk", 1: "Zigzag"})
# Count the total brick kilns, fcbk, zigzag, and conversions
total_kilns = len(filtered_data)
fcbk_count1 = filtered_data[(filtered_data["Type"] == "fcbk")].shape[0]
zigzag_count1 = filtered_data_conv[(filtered_data_conv["Type"] == 'zigzag')].shape[0]
converted_count = filtered_data_conv[filtered_data_conv["Status"] == "converted"].shape[0]
# Display the total count and conversions
if location == "Lucknow":
st.subheader(f"Total Brick Kilns in Lucknow up to Year {year_selected}: {total_kilns}")
st.write(f"Fcbk: {fcbk_count1}",' and ' f"Zigzag: {zigzag_count1}")
st.write(f"Converted from fcbk to zigzag: {converted_count}")
elif location == "Ahmedabad":
st.subheader(f"Total Brick Kilns in Ahmedabad up to Year {year_selected}: {total_kilns}")
st.write(f"Fcbk: {fcbk_count1}",' and ' f"Zigzag: {zigzag_count1}")
st.write(f"Converted from fcbk to zigzag: {converted_count}")
else:
st.subheader(f"Total Brick Kilns in Delhi up to Year {year_selected}: {total_kilns}")
st.write(f"Fcbk: {fcbk_count}",' and ' f"Zigzag: {zigzag_count}")
st.write(f"Converted from fcbk to zigzag: {converted_count}")
if location == "Lucknow":
fig_filtered = px.scatter_mapbox(
data,
lat="Lat",
lon="Lon",
color="Status",
color_discrete_map={"fcbk": "blue", "converted": "green", "zigzag": "red"}, # Set colors for fcbk, converted, and zigzag kilns
mapbox_style="carto-positron",
hover_name="Type",
zoom=8.5,
center={"lat": center_lat, "lon": center_lon},
title=f"Brick Kiln Locations and Status up to Year {year_selected}",
height=600,
width=600
)
elif location == "Delhi":
fig_filtered = px.scatter_mapbox(
data,
lat="Lat",
lon="Lon",
color="Status1",
color_discrete_map={"FCBK": "blue", "converted": "green", "Zigzag": "red"}, # Set colors for fcbk, converted, and zigzag kilns
mapbox_style="carto-positron",
hover_name="Type",
zoom=8.5,
center={"lat": center_lat, "lon": center_lon},
title=f"Brick Kiln Locations and Status up to Year {year_selected}",
height=600,
width=600
)
else:
fig_filtered = px.scatter_mapbox(
data,
lat="Lat",
lon="Lon",
color="Status",
color_discrete_map={"fcbk": "blue", "zigzag": "red"}, # Set colors for fcbk, converted, and zigzag kilns
mapbox_style="carto-positron",
hover_name="Type",
zoom=8.5,
center={"lat": center_lat, "lon": center_lon},
title=f"Brick Kiln Locations and Status up to Year {year_selected}",
height=600,
width=600
)
# # Display the map in Streamlit
# st.plotly_chart(fig_filtered)
# Yearly count of fcbk and zigzag kilns up to the selected year
yearly_summary = filtered_data.groupby("Year made")["Type"].value_counts().unstack(fill_value=0)
# Adjust the layout to display the table next to the map
# col1, col2 = st.columns([3, 1.5])
# with col1:
st.plotly_chart(fig_filtered)
# with col2:
# st.subheader("Yearly Kiln Made")
# st.dataframe(yearly_summary)
# # Dropdown to select the location
# Define historical data for Lucknow
years_lucknow = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022]
brick_kilns_total_lucknow = [117, 314, 376, 396, 408, 432, 433, 454, 461, 466, 470, 477, 478]
brick_kilns_fcb_lucknow = [52, 127, 159, 171, 178, 191, 192, 206, 208, 209, 209, 209, 209]
brick_kilns_zigzag_lucknow = [65, 187, 217, 225, 230, 241, 241, 248, 253, 257, 261, 268, 269]
# Define historical data for Delhi
years_delhi = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022]
brick_kilns_total_delhi = [188,502,649,701,719,751,770,770,775,783,794,795,796]
brick_kilns_fcb_delhi = [184,496,643,695,712,744,742,727,620,401,146,74,37]
brick_kilns_zigzag_delhi = [4,6,6,6,7,7,28,43,155,382,648,721,759]
#define for Ahmedabad
years_ahmedabad = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022]
brick_kilns_total_ahmedabad = [74,92,115,136,140,155,155,156,156,164,165,169,172]
brick_kilns_fcb_ahmedabad = [74,92,115,136,140,155,155,156,156,164,165,168,172]
brick_kilns_zigzag_ahmedabad = [0,0,0,0,0,0,0,0,0,0,0,1,0]
# Select the dataset based on the location
if location == "Lucknow":
years = years_lucknow
brick_kilns_total = brick_kilns_total_lucknow
brick_kilns_fcb = brick_kilns_fcb_lucknow
brick_kilns_zigzag = brick_kilns_zigzag_lucknow
title = "Number of Brick Kilns Over Years in Lucknow"
elif location == "Ahmedabad":
years = years_ahmedabad
brick_kilns_total = brick_kilns_total_ahmedabad
brick_kilns_fcb = brick_kilns_fcb_ahmedabad
brick_kilns_zigzag = brick_kilns_zigzag_ahmedabad
title = "Number of Brick Kilns Over Years in Ahmedabad"
else:
years = years_delhi
brick_kilns_total = brick_kilns_total_delhi
brick_kilns_fcb = brick_kilns_fcb_delhi
brick_kilns_zigzag = brick_kilns_zigzag_delhi
title = "Number of Brick Kilns Over Years in Delhi"
# Creating the line plot for the number of brick kilns over the years
fig_line = go.Figure()
fig_line.add_trace(go.Scatter(x=years, y=brick_kilns_total, mode='lines+markers', name='Total Brick Kilns', line=dict(color='blue')))
fig_line.add_trace(go.Scatter(x=years, y=brick_kilns_fcb, mode='lines+markers', name='FCBTK', line=dict(color='red')))
fig_line.add_trace(go.Scatter(x=years, y=brick_kilns_zigzag, mode='lines+markers', name='Zigzag Brick Kilns', line=dict(color='green')))
# Adding labels and title to the line chart
fig_line.update_layout(
title=title,
xaxis_title="Years",
yaxis_title="Number of Brick Kilns",
yaxis=dict(tickmode='linear', tick0=0, dtick=100, showgrid=False),
width=900
)
# Adding vertical line for the selected year
fig_line.add_vline(x=year_selected, line_dash="dash", line_color="black", annotation_text=f"Year {year_selected}")
# Displaying the line chart
st.plotly_chart(fig_line)
|