File size: 8,692 Bytes
41896b8
 
 
 
 
 
03d78db
8a507f6
 
2ed9a54
8a507f6
 
 
03d78db
2ed9a54
 
03d78db
2ed9a54
 
03d78db
2ed9a54
 
8a507f6
41896b8
 
 
5bdc506
41896b8
 
8a507f6
41896b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bdc506
 
2ed9a54
 
 
 
 
 
 
 
 
 
 
 
 
41896b8
 
 
 
 
 
 
 
 
2ed9a54
 
41896b8
 
 
 
2ed9a54
 
 
 
 
 
 
 
 
 
 
 
 
 
41896b8
5bdc506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41896b8
 
 
 
 
 
 
 
 
2ed9a54
41896b8
2ed9a54
 
41896b8
2ed9a54
 
 
 
8a507f6
 
 
 
 
 
 
 
 
 
 
 
 
2ed9a54
 
5bdc506
 
2ed9a54
 
8a507f6
 
 
 
 
 
 
2ed9a54
 
 
 
 
 
8a507f6
 
 
 
 
 
41896b8
 
 
 
08b1e0a
2f95349
41896b8
 
 
 
8a507f6
41896b8
 
8a507f6
41896b8
 
 
 
 
8a507f6
41896b8
8a507f6
df3805e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objs as go

# Load the CSV file
# file = "brick_kiln_lucknow_v1.csv"  # Replace with the correct path to your CSV file

# Dropdown to select the location
location = st.selectbox("Select Location", ["Lucknow", "Delhi", "Ahmedabad"])

# Determine the file path based on selection
if location == "Lucknow":
    file = "brick_kiln_lucknow_v1.csv"
    center_lat, center_lon = 26.8467, 80.9462
elif location == "Delhi":
    file = "brick_kiln_delhi_v1.csv"
    center_lat, center_lon = 28.7041, 77.1025
else:  # Ahmedabad
    file = "brick_kiln_ahmedabad_v2.csv"  # Replace with the actual path
    center_lat, center_lon = 23.0225, 72.5714


data = pd.read_csv(file)

# Streamlit app title
st.markdown("<h2 style='text-align: center;'>Brick Kiln Location and Conversion Visualization</h2>", unsafe_allow_html=True)

# Slider to select the year
year_selected = st.slider("Select the Year", min_value=int(data["Year made"].min()), max_value=int(data["Year made"].max()), value=int(data["Year made"].min()), step=1)
filtered_data = data[data["Year made"] <= year_selected]

# # Calculate the change in fcbk to zigzag by checking the 'fcb to zigzag' column
filtered_data["Conversion"] = filtered_data.apply(
    lambda row: "Converted" if row["Year made"] != row["fcb to zigzag"] else "No Conversion", axis=1
)


# Function to determine the status of each kiln based on the selected year
def get_status(row, year_selected):
    if row["fcb to zigzag"]==2009:
        return "fcbk"
    elif year_selected == row["fcb to zigzag"]:
        return "converted"
    else:
        return "zigzag"
    

    
# Function to classify each kiln based on the selected year
def classify_kiln(row, year_selected):
    if row["Year made"] > year_selected:
        return None  # Kiln not yet made
    elif row["fcb to zigzag"] > year_selected:
        return "FCBK"  # Kiln still FCBK
    else:
        return "Zigzag"  # Kiln has converted to Zigzag

# Apply classification to the data based on the selected year
data["Status1"] = data.apply(lambda row: classify_kiln(row, year_selected), axis=1)
fcbk_count = data[data["Status1"] == "FCBK"].shape[0]
zigzag_count = data[data["Status1"] == "Zigzag"].shape[0]


# Apply the status function to each row
data["Status"] = data.apply(lambda row: get_status(row, year_selected), axis=1)
filtered_data_conv = data[data["Year made"] <= year_selected]
filtered_data_conv["Type"] = filtered_data_conv["Type"].map({0: "fcbk", 1: "zigzag"})
filtered_data["Type"] = filtered_data["Type"].map({0: "fcbk", 1: "Zigzag"})
# Count the total brick kilns, fcbk, zigzag, and conversions
total_kilns = len(filtered_data)
fcbk_count1 = filtered_data[(filtered_data["Type"] == "fcbk")].shape[0]
zigzag_count1 = filtered_data_conv[(filtered_data_conv["Type"] == 'zigzag')].shape[0]
converted_count = filtered_data_conv[filtered_data_conv["Status"] == "converted"].shape[0]


# Display the total count and conversions
if location == "Lucknow":
    st.subheader(f"Total Brick Kilns in Lucknow up to Year {year_selected}: {total_kilns}")
    st.write(f"Fcbk: {fcbk_count1}",'  and  ' f"Zigzag: {zigzag_count1}")
    st.write(f"Converted from fcbk to zigzag: {converted_count}")
elif location == "Ahmedabad":
    st.subheader(f"Total Brick Kilns in Ahmedabad up to Year {year_selected}: {total_kilns}")
    st.write(f"Fcbk: {fcbk_count1}",'  and  ' f"Zigzag: {zigzag_count1}")
    st.write(f"Converted from fcbk to zigzag: {converted_count}")    
else:    
    st.subheader(f"Total Brick Kilns in Delhi up to Year {year_selected}: {total_kilns}")
    st.write(f"Fcbk: {fcbk_count}",'  and  ' f"Zigzag: {zigzag_count}")
    st.write(f"Converted from fcbk to zigzag: {converted_count}")



if location == "Lucknow":
    fig_filtered = px.scatter_mapbox(
        data,
        lat="Lat",
        lon="Lon",
        color="Status",
        color_discrete_map={"fcbk": "blue", "converted": "green", "zigzag": "red"},  # Set colors for fcbk, converted, and zigzag kilns
        mapbox_style="carto-positron",
        hover_name="Type",
        zoom=8.5,
        center={"lat": center_lat, "lon": center_lon},
        title=f"Brick Kiln Locations and Status up to Year {year_selected}",
        height=600,
        width=600
    )
elif location == "Delhi":
    fig_filtered = px.scatter_mapbox(
        data,
        lat="Lat",
        lon="Lon",
        color="Status1",
        color_discrete_map={"FCBK": "blue", "converted": "green", "Zigzag": "red"},  # Set colors for fcbk, converted, and zigzag kilns
        mapbox_style="carto-positron",
        hover_name="Type",
        zoom=8.5,
        center={"lat": center_lat, "lon": center_lon},
        title=f"Brick Kiln Locations and Status up to Year {year_selected}",
        height=600,
        width=600
    )
else:
    fig_filtered = px.scatter_mapbox(
        data,
        lat="Lat",
        lon="Lon",
        color="Status",
        color_discrete_map={"fcbk": "blue", "zigzag": "red"},  # Set colors for fcbk, converted, and zigzag kilns
        mapbox_style="carto-positron",
        hover_name="Type",
        zoom=8.5,
        center={"lat": center_lat, "lon": center_lon},
        title=f"Brick Kiln Locations and Status up to Year {year_selected}",
        height=600,
        width=600
    )



# # Display the map in Streamlit
# st.plotly_chart(fig_filtered)

# Yearly count of fcbk and zigzag kilns up to the selected year
yearly_summary = filtered_data.groupby("Year made")["Type"].value_counts().unstack(fill_value=0)

# Adjust the layout to display the table next to the map
# col1, col2 = st.columns([3, 1.5])

# with col1:
st.plotly_chart(fig_filtered)
    
# with col2:
#     st.subheader("Yearly Kiln Made")
#     st.dataframe(yearly_summary)
# # Dropdown to select the location

# Define historical data for Lucknow
years_lucknow = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022]
brick_kilns_total_lucknow = [117, 314, 376, 396, 408, 432, 433, 454, 461, 466, 470, 477, 478]
brick_kilns_fcb_lucknow = [52, 127, 159, 171, 178, 191, 192, 206, 208, 209, 209, 209, 209]
brick_kilns_zigzag_lucknow = [65, 187, 217, 225, 230, 241, 241, 248, 253, 257, 261, 268, 269]

# Define historical data for Delhi
years_delhi = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022]
brick_kilns_total_delhi = [188,502,649,701,719,751,770,770,775,783,794,795,796]
brick_kilns_fcb_delhi = [184,496,643,695,712,744,742,727,620,401,146,74,37]
brick_kilns_zigzag_delhi = [4,6,6,6,7,7,28,43,155,382,648,721,759]  

#define for Ahmedabad
years_ahmedabad = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022]
brick_kilns_total_ahmedabad = [74,92,115,136,140,155,155,156,156,164,165,169,172]
brick_kilns_fcb_ahmedabad = [74,92,115,136,140,155,155,156,156,164,165,168,172]
brick_kilns_zigzag_ahmedabad = [0,0,0,0,0,0,0,0,0,0,0,1,0]

# Select the dataset based on the location
if location == "Lucknow":
    years = years_lucknow
    brick_kilns_total = brick_kilns_total_lucknow
    brick_kilns_fcb = brick_kilns_fcb_lucknow
    brick_kilns_zigzag = brick_kilns_zigzag_lucknow
    title = "Number of Brick Kilns Over Years in Lucknow"
elif location == "Ahmedabad":
    years = years_ahmedabad
    brick_kilns_total = brick_kilns_total_ahmedabad
    brick_kilns_fcb = brick_kilns_fcb_ahmedabad
    brick_kilns_zigzag = brick_kilns_zigzag_ahmedabad
    title = "Number of Brick Kilns Over Years in Ahmedabad"
else:
    years = years_delhi
    brick_kilns_total = brick_kilns_total_delhi
    brick_kilns_fcb = brick_kilns_fcb_delhi
    brick_kilns_zigzag = brick_kilns_zigzag_delhi
    title = "Number of Brick Kilns Over Years in Delhi"

# Creating the line plot for the number of brick kilns over the years
fig_line = go.Figure()

fig_line.add_trace(go.Scatter(x=years, y=brick_kilns_total, mode='lines+markers', name='Total Brick Kilns', line=dict(color='blue')))
fig_line.add_trace(go.Scatter(x=years, y=brick_kilns_fcb, mode='lines+markers', name='FCBTK', line=dict(color='red')))
fig_line.add_trace(go.Scatter(x=years, y=brick_kilns_zigzag, mode='lines+markers', name='Zigzag Brick Kilns', line=dict(color='green')))

# Adding labels and title to the line chart
fig_line.update_layout(
    title=title,
    xaxis_title="Years",
    yaxis_title="Number of Brick Kilns",
    yaxis=dict(tickmode='linear', tick0=0, dtick=100, showgrid=False), 
    width=900
)

# Adding vertical line for the selected year
fig_line.add_vline(x=year_selected, line_dash="dash", line_color="black", annotation_text=f"Year {year_selected}")

# Displaying the line chart
st.plotly_chart(fig_line)