bhuvan / app.py
Zeel's picture
add centroid
210106d
raw
history blame
5.3 kB
import re
import json
import streamlit as st
import pandas as pd
import geopandas as gpd
import leafmap.foliumap as leafmap
from optree import tree_map
# wide streamlit display
st.set_page_config(layout="wide")
# Function
# Logo
cols = st.columns([1, 7, 1])
with cols[0]:
st.image("Final_IITGN-Logo-symmetric-Color.png")
with cols[-1]:
st.image("IFS.jpg")
# Title
# make title in center
with cols[1]:
st.markdown(
f"""
<h1 style="text-align: center;">Bhuvan (भुवन): Interactive KML/GeoJSON Viewer</h1>
""",
unsafe_allow_html=True,
)
file_url = st.query_params.get("file_url", None)
print(f"{file_url=}")
if file_url:
if ("file_url" in st.session_state) and (st.session_state.file_url == file_url):
# st.toast("Using cached data")
input_gdf = st.session_state.input_gdf
else:
st.session_state.file_url = file_url
if file_url.startswith("https://drive.google.com/file/d/"):
ID = file_url.replace("https://drive.google.com/file/d/", "").split("/")[0]
file_url = f"https://drive.google.com/uc?id={ID}"
elif file_url.startswith("https://drive.google.com/open?id="):
ID = file_url.replace("https://drive.google.com/open?id=", "")
file_url = f"https://drive.google.com/uc?id={ID}"
input_gdf = gpd.read_file(file_url)
input_gdf = input_gdf.to_crs(epsg=7761) # Gujarat zone
st.session_state.input_gdf = input_gdf
# st.toast("Data loaded and cached")
def format_fn(x):
return input_gdf.drop(columns=["geometry"]).loc[x].to_dict()
with st.expander("Advanced Controls", expanded=False):
input_geometry_idx = st.selectbox("Select the geometry", input_gdf.index, format_func=format_fn)
map_type = st.radio(
"",
["Esri Satellite Map", "Google Hybrid Map (displays place names)", "Google Satellite Map"],
horizontal=True,
)
height = st.number_input("Map height (px)", 1, 10000, 600, 1)
geometry_gdf = input_gdf[input_gdf.index == input_geometry_idx]
m = leafmap.Map()
st.markdown(
"""
<style>
.stRadio [role=radiogroup]{
align-items: center;
justify-content: center;
}
</style>
""",
unsafe_allow_html=True,
)
if map_type == "Google Hybrid Map (displays place names)":
st.write(
"<h4><div style='text-align: center;'>Google Hybrid (displays place names)</div></h4>",
unsafe_allow_html=True,
)
m.add_basemap("HYBRID")
elif map_type == "Google Satellite Map":
st.write("<h4><div style='text-align: center;'>Google Satellite</div></h4>", unsafe_allow_html=True)
m.add_basemap("SATELLITE")
elif map_type == "Esri Satellite Map":
st.write("<h4><div style='text-align: center;'>Esri - 2024/10/10</div></h4>", unsafe_allow_html=True)
m.add_wms_layer(
"https://wayback.maptiles.arcgis.com/arcgis/rest/services/World_Imagery/WMTS/1.0.0/GoogleMapsCompatible/MapServer/tile/56450/{z}/{y}/{x}",
layers="0",
)
else:
st.error("Invalid map type")
st.stop()
m.add_gdf(
geometry_gdf.to_crs(epsg=4326),
layer_name="Geometry",
zoom_to_layer=True,
style_function=lambda x: {"color": "red", "fillOpacity": 0.0},
)
m.to_streamlit(height=height)
# Metrics
stats_df = pd.DataFrame()
stats_df["Points"] = json.loads(geometry_gdf.to_crs(4326).to_json())["features"][0]["geometry"]["coordinates"]
stats_df["Centroid"] = geometry_gdf.centroid.to_crs(4326).item()
stats_df["Area (ha)"] = geometry_gdf.geometry.area.item() / 10000
stats_df["Perimeter (m)"] = geometry_gdf.geometry.length.item()
st.write("<h3><div style='text-align: center;'>Geometry Metrics</div></h3>", unsafe_allow_html=True)
# st.markdown(
# f"""| Metric | Value |
# | --- | --- |
# | Area (ha) | {stats_df['Area (ha)'].item():.2f} ha|
# | Perimeter (m) | {stats_df['Perimeter (m)'].item():.2f} m |"""
# unsafe_allow_html=True)
centroid_x = stats_df["Centroid"].item().xy[0][0]
centroid_y = stats_df["Centroid"].item().xy[1][0]
st.markdown(
f"""
<div style="display: flex; justify-content: center;">
<table>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
<tr>
<td>Centroid</td>
<td>({centroid_x:.5f}, {centroid_y:.5f})</td>
<tr>
<td>Area (ha)</td>
<td>{stats_df['Area (ha)'].item():.2f} ha</td>
</tr>
<tr>
<td>Perimeter (m)</td>
<td>{stats_df['Perimeter (m)'].item():.2f} m</td>
</tr>
</table>
</div>
""",
unsafe_allow_html=True,
)
print(stats_df["Points"].item())
print(type(stats_df["Points"].item()))
csv = stats_df.T.to_csv(index=True)
st.download_button(
"Download Geometry Metrics", csv, f"{file_url}_metrics.csv", "text/csv", use_container_width=True
)
else:
st.warning("Please provide a KML or GeoJSON URL as a query parameter, e.g., `?file_url=<your_file_url>`")