File size: 6,496 Bytes
1cc6224
 
8f0ff17
1cc6224
 
 
 
 
 
33352e0
1cc6224
 
 
 
8a84bf1
ff9d83f
 
 
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33352e0
1cc6224
 
33352e0
ff9d83f
 
 
 
1cc6224
 
 
511b1cf
1cc6224
 
 
 
 
ff9d83f
 
 
 
 
 
 
 
 
1cc6224
 
 
 
 
 
 
 
 
4f76208
1cc6224
 
 
 
 
 
 
 
a30d322
1cc6224
2d1ddf1
1cc6224
 
 
 
77affd0
 
 
68fdb73
f0a1d8b
 
 
1360cd6
500648b
a6e324b
1cc6224
8f0ff17
40867ed
1cc6224
1a07fd6
7d71853
 
 
 
2e36c51
 
bb0e5cf
ff5ec6d
 
bb0e5cf
 
244daa9
1a07fd6
 
 
 
1cc6224
1a07fd6
427f4a8
1cc6224
 
 
 
 
 
 
33352e0
1cc6224
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import webbrowser
import openai
import os

os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt"  # Path to the file storing recipe-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'

openai.api_key = os.environ["OPENAI_API_KEY"]

system_message = "You are a meal chatbot specialized in providing information on meals, recipes, and ingredients."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]

# Attempt to load the necessary models and provide feedback on success or failure
try:
    retrieval_model = SentenceTransformer(retrieval_model_name)
    print("Models loaded successfully.")
except Exception as e:
    print(f"Failed to load models: {e}")

def load_and_preprocess_text(filename):
    """
    Load and preprocess text from a file, removing empty lines and stripping whitespace.
    """
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            segments = [line.strip() for line in file if line.strip()]
        print("Text loaded and preprocessed successfully.")
        return segments
    except Exception as e:
        print(f"Failed to load or preprocess text: {e}")
        return []

segments = load_and_preprocess_text(filename)

def find_relevant_segment(user_query, segments):
    """
    Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
    This version finds the best match based on the content of the query.
    """
    try:
        # Lowercase the query for better matching
        lower_query = user_query.lower()
        
        # Encode the query and the segments
        query_embedding = retrieval_model.encode(lower_query)
        segment_embeddings = retrieval_model.encode(segments)
        
        # Compute cosine similarities between the query and the segments
        similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        
        # Find the index of the most similar segment
        best_idx = similarities.argmax()
        
        # Return the most relevant segment
        return segments[best_idx]
    except Exception as e:
        print(f"Error in finding relevant segment: {e}")
        return ""

def generate_response(user_query, relevant_segment):
    """
    Generate a response emphasizing the bot's capability in providing sustainable recipe information.
    """
    try:
        user_message = f"Here's the information on the recipe: {relevant_segment}"

        # Append user's message to messages list
        messages.append({"role": "user", "content": user_message})
        
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=messages,
            max_tokens=500,
            temperature=0.2,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0
        )
        
        # Extract the response text
        output_text = response['choices'][0]['message']['content'].strip()
        
        # Append assistant's message to messages list for context
        messages.append({"role": "assistant", "content": output_text})
        
        return output_text
        
    except Exception as e:
        print(f"Error in generating response: {e}")
        return f"Error in generating response: {e}"

def query_model(question):
    """
    Process a question, find relevant information, and generate a response.
    """
    if question == "":
        return "Welcome to SustAIBot! Ask me anything about recipes with mushrooms, carrots, kale, and tofu as the main ingredients."
    relevant_segment = find_relevant_segment(question, segments)
    if not relevant_segment:
        return "Could not find specific information. Please refine your question."
    response = generate_response(question, relevant_segment)
    return response

# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# Welcome to SustAIna-bot!

## Your AI-driven assistant for meat, veggie, and plant-based sustainable recipe-related queries. Created by Cecilia, Halle, and Elena of the Kode With Klossy Camp. 
"""

topics = """
### Feel Free to ask me anything from the topics below!
- Mushroom Recipes
- Carrot Recipes
- Kale Recipes
- Tofu Recipes
- Lentils Recipes
- Chickpea Reicpes
- Fish Recipes
- Chicken Recipes
- Beef Recipes
- Pork Recipes
"""
def display_image():
    return "https://huggingface.co/spaces/Sustainable-Meal-Assistant/TreeBot/resolve/main/sustainable-food-principles%C2%A9iStock-552584505.jpg"

theme = gr.themes.Base().set(
background_fill_primary='#C1D0B5',  # Light green background
    background_fill_primary_dark='#737373',  # Dark green background
    background_fill_secondary='#FFF8DE',  # Light off white background
    background_fill_secondary_dark='#99A98F',  # Dark green background
    border_color_accent='#FFF8DE',  # Accent border color
    border_color_accent_dark='#3C8181',  # Dark accent border color
    border_color_accent_subdued='#FF8A65',  # Subdued accent border color
    border_color_primary='#737373',  # Primary border color
    block_border_color='##3C8181',  # Block border color
    button_primary_background_fill='#FF9800',  # Primary button background color
    button_primary_background_fill_dark='#EF6C00'  # Dark primary button background color

)


    
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme=theme) as demo:
    gr.Image(display_image(), show_label = False, show_share_button = False, show_download_button = False)
    gr.Markdown(welcome_message)  # Display the formatted welcome message
    with gr.Row():
        with gr.Column():
            gr.Markdown(topics)  # Show the topics on the left side
    with gr.Row():
        with gr.Column():
            question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
            answer = gr.Textbox(label="SustainAIBot Response", placeholder="SustainAIBot will respond here...", interactive=False, lines=10)
            submit_button = gr.Button("Submit")
            submit_button.click(fn=query_model, inputs=question, outputs=answer)
    

# Launch the Gradio app to allow user interaction
demo.launch(share=True)