Spaces:
Sleeping
Sleeping
File size: 6,496 Bytes
1cc6224 8f0ff17 1cc6224 33352e0 1cc6224 8a84bf1 ff9d83f 1cc6224 33352e0 1cc6224 33352e0 ff9d83f 1cc6224 511b1cf 1cc6224 ff9d83f 1cc6224 4f76208 1cc6224 a30d322 1cc6224 2d1ddf1 1cc6224 77affd0 68fdb73 f0a1d8b 1360cd6 500648b a6e324b 1cc6224 8f0ff17 40867ed 1cc6224 1a07fd6 7d71853 2e36c51 bb0e5cf ff5ec6d bb0e5cf 244daa9 1a07fd6 1cc6224 1a07fd6 427f4a8 1cc6224 33352e0 1cc6224 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import webbrowser
import openai
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt" # Path to the file storing recipe-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
system_message = "You are a meal chatbot specialized in providing information on meals, recipes, and ingredients."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version finds the best match based on the content of the query.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the index of the most similar segment
best_idx = similarities.argmax()
# Return the most relevant segment
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
"""
Generate a response emphasizing the bot's capability in providing sustainable recipe information.
"""
try:
user_message = f"Here's the information on the recipe: {relevant_segment}"
# Append user's message to messages list
messages.append({"role": "user", "content": user_message})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=500,
temperature=0.2,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
# Extract the response text
output_text = response['choices'][0]['message']['content'].strip()
# Append assistant's message to messages list for context
messages.append({"role": "assistant", "content": output_text})
return output_text
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "Welcome to SustAIBot! Ask me anything about recipes with mushrooms, carrots, kale, and tofu as the main ingredients."
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "Could not find specific information. Please refine your question."
response = generate_response(question, relevant_segment)
return response
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# Welcome to SustAIna-bot!
## Your AI-driven assistant for meat, veggie, and plant-based sustainable recipe-related queries. Created by Cecilia, Halle, and Elena of the Kode With Klossy Camp.
"""
topics = """
### Feel Free to ask me anything from the topics below!
- Mushroom Recipes
- Carrot Recipes
- Kale Recipes
- Tofu Recipes
- Lentils Recipes
- Chickpea Reicpes
- Fish Recipes
- Chicken Recipes
- Beef Recipes
- Pork Recipes
"""
def display_image():
return "https://huggingface.co/spaces/Sustainable-Meal-Assistant/TreeBot/resolve/main/sustainable-food-principles%C2%A9iStock-552584505.jpg"
theme = gr.themes.Base().set(
background_fill_primary='#C1D0B5', # Light green background
background_fill_primary_dark='#737373', # Dark green background
background_fill_secondary='#FFF8DE', # Light off white background
background_fill_secondary_dark='#99A98F', # Dark green background
border_color_accent='#FFF8DE', # Accent border color
border_color_accent_dark='#3C8181', # Dark accent border color
border_color_accent_subdued='#FF8A65', # Subdued accent border color
border_color_primary='#737373', # Primary border color
block_border_color='##3C8181', # Block border color
button_primary_background_fill='#FF9800', # Primary button background color
button_primary_background_fill_dark='#EF6C00' # Dark primary button background color
)
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme=theme) as demo:
gr.Image(display_image(), show_label = False, show_share_button = False, show_download_button = False)
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column():
gr.Markdown(topics) # Show the topics on the left side
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
answer = gr.Textbox(label="SustainAIBot Response", placeholder="SustainAIBot will respond here...", interactive=False, lines=10)
submit_button = gr.Button("Submit")
submit_button.click(fn=query_model, inputs=question, outputs=answer)
# Launch the Gradio app to allow user interaction
demo.launch(share=True)
|