Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain.document_loaders import PyMuPDFLoader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.schema import Document
|
5 |
+
from typing import List
|
6 |
+
import logging
|
7 |
+
from pathlib import Path
|
8 |
+
import requests
|
9 |
+
import base64
|
10 |
+
import io
|
11 |
+
import fitz
|
12 |
+
from PIL import Image
|
13 |
+
from datasets import Dataset
|
14 |
+
from huggingface_hub import HfApi
|
15 |
+
import os
|
16 |
+
|
17 |
+
# Configure logging
|
18 |
+
logging.basicConfig(level=logging.INFO)
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
# Original chunk_pdf function (slightly modified for Gradio)
|
22 |
+
def chunk_pdf(
|
23 |
+
file_path: str,
|
24 |
+
chunk_size: int = 1000,
|
25 |
+
chunk_overlap: int = 200,
|
26 |
+
encoding: str = "utf-8",
|
27 |
+
preserve_numbering: bool = True
|
28 |
+
) -> List[Document]:
|
29 |
+
if chunk_size <= 0:
|
30 |
+
raise ValueError("chunk_size must be positive")
|
31 |
+
if chunk_overlap < 0:
|
32 |
+
raise ValueError("chunk_overlap cannot be negative")
|
33 |
+
if chunk_overlap >= chunk_size:
|
34 |
+
raise ValueError("chunk_overlap must be less than chunk_size")
|
35 |
+
|
36 |
+
try:
|
37 |
+
temp_file = None
|
38 |
+
if file_path.startswith(("http://", "https://")):
|
39 |
+
logger.info(f"Downloading PDF from {file_path}")
|
40 |
+
response = requests.get(file_path, stream=True, timeout=10)
|
41 |
+
response.raise_for_status()
|
42 |
+
temp_file = Path("temp.pdf")
|
43 |
+
with open(temp_file, "wb") as f:
|
44 |
+
for chunk in response.iter_content(chunk_size=8192):
|
45 |
+
f.write(chunk)
|
46 |
+
file_path = str(temp_file)
|
47 |
+
elif not Path(file_path).exists():
|
48 |
+
raise FileNotFoundError(f"PDF file not found at: {file_path}")
|
49 |
+
|
50 |
+
logger.info(f"Loading PDF from {file_path}")
|
51 |
+
loader = PyMuPDFLoader(file_path)
|
52 |
+
pages = loader.load()
|
53 |
+
|
54 |
+
if not pages:
|
55 |
+
logger.warning(f"No content extracted from {file_path}")
|
56 |
+
return []
|
57 |
+
|
58 |
+
separators = (
|
59 |
+
["\n\d+\.\s+", "\n\n", "\n", ".", " ", ""]
|
60 |
+
if preserve_numbering
|
61 |
+
else ["\n\n", "\n", ".", " ", ""]
|
62 |
+
)
|
63 |
+
|
64 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
65 |
+
chunk_size=chunk_size,
|
66 |
+
chunk_overlap=chunk_overlap,
|
67 |
+
length_function=len,
|
68 |
+
separators=separators,
|
69 |
+
keep_separator=True,
|
70 |
+
add_start_index=True,
|
71 |
+
is_separator_regex=preserve_numbering
|
72 |
+
)
|
73 |
+
|
74 |
+
logger.info(f"Splitting {len(pages)} pages into chunks")
|
75 |
+
chunks = text_splitter.split_documents(pages)
|
76 |
+
|
77 |
+
if preserve_numbering:
|
78 |
+
merged_chunks = []
|
79 |
+
current_chunk = None
|
80 |
+
|
81 |
+
for chunk in chunks:
|
82 |
+
content = chunk.page_content.strip()
|
83 |
+
if current_chunk is None:
|
84 |
+
current_chunk = chunk
|
85 |
+
elif content.startswith(tuple(f"{i}." for i in range(10))):
|
86 |
+
if current_chunk:
|
87 |
+
merged_chunks.append(current_chunk)
|
88 |
+
current_chunk = chunk
|
89 |
+
else:
|
90 |
+
current_chunk.page_content += "\n" + content
|
91 |
+
current_chunk.metadata["end_index"] = chunk.metadata["start_index"] + len(content)
|
92 |
+
|
93 |
+
if current_chunk:
|
94 |
+
merged_chunks.append(current_chunk)
|
95 |
+
chunks = merged_chunks
|
96 |
+
|
97 |
+
logger.info(f"Created {len(chunks)} chunks")
|
98 |
+
return chunks
|
99 |
+
|
100 |
+
except Exception as e:
|
101 |
+
logger.error(f"Error processing PDF {file_path}: {str(e)}")
|
102 |
+
raise
|
103 |
+
finally:
|
104 |
+
if temp_file and temp_file.exists():
|
105 |
+
temp_file.unlink()
|
106 |
+
|
107 |
+
# Custom function to convert PDF page to base64
|
108 |
+
def pdf_page_to_base64(pdf_path: str, page_number: int):
|
109 |
+
pdf_document = fitz.open(pdf_path)
|
110 |
+
page = pdf_document.load_page(page_number - 1) # input is one-indexed
|
111 |
+
pix = page.get_pixmap()
|
112 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
113 |
+
|
114 |
+
buffer = io.BytesIO()
|
115 |
+
img.save(buffer, format="PNG")
|
116 |
+
return base64.b64encode(buffer.getvalue()).decode("utf-8")
|
117 |
+
|
118 |
+
# Function to process PDF and create dataset
|
119 |
+
def process_pdf_and_save(pdf_file, chunk_size, chunk_overlap, preserve_numbering, hf_token, repo_name):
|
120 |
+
try:
|
121 |
+
# Save uploaded file temporarily
|
122 |
+
pdf_path = pdf_file.name
|
123 |
+
chunks = chunk_pdf(pdf_path, chunk_size, chunk_overlap, "utf-8", preserve_numbering)
|
124 |
+
|
125 |
+
# Prepare dataset
|
126 |
+
data = {
|
127 |
+
"chunk_id": [],
|
128 |
+
"content": [],
|
129 |
+
"metadata": [],
|
130 |
+
"page_image": []
|
131 |
+
}
|
132 |
+
|
133 |
+
for i, chunk in enumerate(chunks):
|
134 |
+
data["chunk_id"].append(i)
|
135 |
+
data["content"].append(chunk.page_content)
|
136 |
+
data["metadata"].append(chunk.metadata)
|
137 |
+
page_num = chunk.metadata.get("page", 1)
|
138 |
+
img_base64 = pdf_page_to_base64(pdf_path, page_num)
|
139 |
+
data["page_image"].append(img_base64)
|
140 |
+
|
141 |
+
# Create Hugging Face dataset
|
142 |
+
dataset = Dataset.from_dict(data)
|
143 |
+
|
144 |
+
# Push to Hugging Face
|
145 |
+
api = HfApi()
|
146 |
+
api.create_repo(repo_id=repo_name, token=hf_token, repo_type="dataset", exist_ok=True)
|
147 |
+
dataset.push_to_hub(repo_name, token=hf_token)
|
148 |
+
|
149 |
+
return f"Dataset created with {len(chunks)} chunks and saved to Hugging Face at {repo_name}"
|
150 |
+
except Exception as e:
|
151 |
+
return f"Error: {str(e)}"
|
152 |
+
|
153 |
+
# Gradio Interface
|
154 |
+
with gr.Blocks(title="PDF Chunking and Dataset Creator") as demo:
|
155 |
+
gr.Markdown("# PDF Chunking and Dataset Creator")
|
156 |
+
gr.Markdown("Upload a PDF, configure chunking parameters, and save the dataset to Hugging Face.")
|
157 |
+
|
158 |
+
with gr.Row():
|
159 |
+
with gr.Column():
|
160 |
+
pdf_input = gr.File(label="Upload PDF")
|
161 |
+
chunk_size = gr.Slider(500, 2000, value=1000, step=100, label="Chunk Size")
|
162 |
+
chunk_overlap = gr.Slider(0, 500, value=200, step=50, label="Chunk Overlap")
|
163 |
+
preserve_numbering = gr.Checkbox(label="Preserve Numbering", value=True)
|
164 |
+
hf_token = gr.Textbox(label="Hugging Face Token", type="password")
|
165 |
+
repo_name = gr.Textbox(label="Hugging Face Repository Name (e.g., username/dataset-name)")
|
166 |
+
submit_btn = gr.Button("Process and Save")
|
167 |
+
|
168 |
+
with gr.Column():
|
169 |
+
output = gr.Textbox(label="Result")
|
170 |
+
|
171 |
+
submit_btn.click(
|
172 |
+
fn=process_pdf_and_save,
|
173 |
+
inputs=[pdf_input, chunk_size, chunk_overlap, preserve_numbering, hf_token, repo_name],
|
174 |
+
outputs=output
|
175 |
+
)
|
176 |
+
|
177 |
+
demo.launch(
|
178 |
+
share=True,
|
179 |
+
)
|