Svngoku commited on
Commit
099e67a
·
verified ·
1 Parent(s): 0488300

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +179 -0
app.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from langchain.document_loaders import PyMuPDFLoader
3
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
4
+ from langchain.schema import Document
5
+ from typing import List
6
+ import logging
7
+ from pathlib import Path
8
+ import requests
9
+ import base64
10
+ import io
11
+ import fitz
12
+ from PIL import Image
13
+ from datasets import Dataset
14
+ from huggingface_hub import HfApi
15
+ import os
16
+
17
+ # Configure logging
18
+ logging.basicConfig(level=logging.INFO)
19
+ logger = logging.getLogger(__name__)
20
+
21
+ # Original chunk_pdf function (slightly modified for Gradio)
22
+ def chunk_pdf(
23
+ file_path: str,
24
+ chunk_size: int = 1000,
25
+ chunk_overlap: int = 200,
26
+ encoding: str = "utf-8",
27
+ preserve_numbering: bool = True
28
+ ) -> List[Document]:
29
+ if chunk_size <= 0:
30
+ raise ValueError("chunk_size must be positive")
31
+ if chunk_overlap < 0:
32
+ raise ValueError("chunk_overlap cannot be negative")
33
+ if chunk_overlap >= chunk_size:
34
+ raise ValueError("chunk_overlap must be less than chunk_size")
35
+
36
+ try:
37
+ temp_file = None
38
+ if file_path.startswith(("http://", "https://")):
39
+ logger.info(f"Downloading PDF from {file_path}")
40
+ response = requests.get(file_path, stream=True, timeout=10)
41
+ response.raise_for_status()
42
+ temp_file = Path("temp.pdf")
43
+ with open(temp_file, "wb") as f:
44
+ for chunk in response.iter_content(chunk_size=8192):
45
+ f.write(chunk)
46
+ file_path = str(temp_file)
47
+ elif not Path(file_path).exists():
48
+ raise FileNotFoundError(f"PDF file not found at: {file_path}")
49
+
50
+ logger.info(f"Loading PDF from {file_path}")
51
+ loader = PyMuPDFLoader(file_path)
52
+ pages = loader.load()
53
+
54
+ if not pages:
55
+ logger.warning(f"No content extracted from {file_path}")
56
+ return []
57
+
58
+ separators = (
59
+ ["\n\d+\.\s+", "\n\n", "\n", ".", " ", ""]
60
+ if preserve_numbering
61
+ else ["\n\n", "\n", ".", " ", ""]
62
+ )
63
+
64
+ text_splitter = RecursiveCharacterTextSplitter(
65
+ chunk_size=chunk_size,
66
+ chunk_overlap=chunk_overlap,
67
+ length_function=len,
68
+ separators=separators,
69
+ keep_separator=True,
70
+ add_start_index=True,
71
+ is_separator_regex=preserve_numbering
72
+ )
73
+
74
+ logger.info(f"Splitting {len(pages)} pages into chunks")
75
+ chunks = text_splitter.split_documents(pages)
76
+
77
+ if preserve_numbering:
78
+ merged_chunks = []
79
+ current_chunk = None
80
+
81
+ for chunk in chunks:
82
+ content = chunk.page_content.strip()
83
+ if current_chunk is None:
84
+ current_chunk = chunk
85
+ elif content.startswith(tuple(f"{i}." for i in range(10))):
86
+ if current_chunk:
87
+ merged_chunks.append(current_chunk)
88
+ current_chunk = chunk
89
+ else:
90
+ current_chunk.page_content += "\n" + content
91
+ current_chunk.metadata["end_index"] = chunk.metadata["start_index"] + len(content)
92
+
93
+ if current_chunk:
94
+ merged_chunks.append(current_chunk)
95
+ chunks = merged_chunks
96
+
97
+ logger.info(f"Created {len(chunks)} chunks")
98
+ return chunks
99
+
100
+ except Exception as e:
101
+ logger.error(f"Error processing PDF {file_path}: {str(e)}")
102
+ raise
103
+ finally:
104
+ if temp_file and temp_file.exists():
105
+ temp_file.unlink()
106
+
107
+ # Custom function to convert PDF page to base64
108
+ def pdf_page_to_base64(pdf_path: str, page_number: int):
109
+ pdf_document = fitz.open(pdf_path)
110
+ page = pdf_document.load_page(page_number - 1) # input is one-indexed
111
+ pix = page.get_pixmap()
112
+ img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
113
+
114
+ buffer = io.BytesIO()
115
+ img.save(buffer, format="PNG")
116
+ return base64.b64encode(buffer.getvalue()).decode("utf-8")
117
+
118
+ # Function to process PDF and create dataset
119
+ def process_pdf_and_save(pdf_file, chunk_size, chunk_overlap, preserve_numbering, hf_token, repo_name):
120
+ try:
121
+ # Save uploaded file temporarily
122
+ pdf_path = pdf_file.name
123
+ chunks = chunk_pdf(pdf_path, chunk_size, chunk_overlap, "utf-8", preserve_numbering)
124
+
125
+ # Prepare dataset
126
+ data = {
127
+ "chunk_id": [],
128
+ "content": [],
129
+ "metadata": [],
130
+ "page_image": []
131
+ }
132
+
133
+ for i, chunk in enumerate(chunks):
134
+ data["chunk_id"].append(i)
135
+ data["content"].append(chunk.page_content)
136
+ data["metadata"].append(chunk.metadata)
137
+ page_num = chunk.metadata.get("page", 1)
138
+ img_base64 = pdf_page_to_base64(pdf_path, page_num)
139
+ data["page_image"].append(img_base64)
140
+
141
+ # Create Hugging Face dataset
142
+ dataset = Dataset.from_dict(data)
143
+
144
+ # Push to Hugging Face
145
+ api = HfApi()
146
+ api.create_repo(repo_id=repo_name, token=hf_token, repo_type="dataset", exist_ok=True)
147
+ dataset.push_to_hub(repo_name, token=hf_token)
148
+
149
+ return f"Dataset created with {len(chunks)} chunks and saved to Hugging Face at {repo_name}"
150
+ except Exception as e:
151
+ return f"Error: {str(e)}"
152
+
153
+ # Gradio Interface
154
+ with gr.Blocks(title="PDF Chunking and Dataset Creator") as demo:
155
+ gr.Markdown("# PDF Chunking and Dataset Creator")
156
+ gr.Markdown("Upload a PDF, configure chunking parameters, and save the dataset to Hugging Face.")
157
+
158
+ with gr.Row():
159
+ with gr.Column():
160
+ pdf_input = gr.File(label="Upload PDF")
161
+ chunk_size = gr.Slider(500, 2000, value=1000, step=100, label="Chunk Size")
162
+ chunk_overlap = gr.Slider(0, 500, value=200, step=50, label="Chunk Overlap")
163
+ preserve_numbering = gr.Checkbox(label="Preserve Numbering", value=True)
164
+ hf_token = gr.Textbox(label="Hugging Face Token", type="password")
165
+ repo_name = gr.Textbox(label="Hugging Face Repository Name (e.g., username/dataset-name)")
166
+ submit_btn = gr.Button("Process and Save")
167
+
168
+ with gr.Column():
169
+ output = gr.Textbox(label="Result")
170
+
171
+ submit_btn.click(
172
+ fn=process_pdf_and_save,
173
+ inputs=[pdf_input, chunk_size, chunk_overlap, preserve_numbering, hf_token, repo_name],
174
+ outputs=output
175
+ )
176
+
177
+ demo.launch(
178
+ share=True,
179
+ )