Spaces:
Running
Running
app.py
CHANGED
@@ -45,6 +45,29 @@ def encode_image_bytes(image_bytes: bytes) -> str:
|
|
45 |
"""Encodes image bytes to a base64 string."""
|
46 |
return base64.b64encode(image_bytes).decode('utf-8')
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def get_combined_markdown(ocr_response: Any) -> Tuple[str, str, Dict[str, str]]:
|
49 |
"""Combines markdown from OCR pages, replacing image IDs with base64 data URIs."""
|
50 |
processed_markdowns = []
|
@@ -58,12 +81,16 @@ def get_combined_markdown(ocr_response: Any) -> Tuple[str, str, Dict[str, str]]:
|
|
58 |
try:
|
59 |
for page_idx, page in enumerate(ocr_response.pages):
|
60 |
if hasattr(page, 'images') and page.images:
|
|
|
61 |
for img in page.images:
|
62 |
if hasattr(img, 'id') and hasattr(img, 'image_base64') and img.image_base64:
|
63 |
image_data_map[img.id] = img.image_base64
|
|
|
64 |
else:
|
65 |
-
logger.warning(f"Page {page_idx}: Image object lacks 'id' or valid 'image_base64'.")
|
66 |
-
|
|
|
|
|
67 |
if not hasattr(page, 'markdown'):
|
68 |
logger.warning(f"Page {page_idx} lacks 'markdown' attribute. Skipping.")
|
69 |
continue
|
@@ -73,6 +100,7 @@ def get_combined_markdown(ocr_response: Any) -> Tuple[str, str, Dict[str, str]]:
|
|
73 |
current_processed_markdown = current_raw_markdown
|
74 |
|
75 |
img_refs = re.findall(r"!\[.*?\]\((.*?)\)", current_processed_markdown)
|
|
|
76 |
for img_id in img_refs:
|
77 |
if img_id in image_data_map:
|
78 |
base64_data_uri = image_data_map[img_id]
|
@@ -84,11 +112,13 @@ def get_combined_markdown(ocr_response: Any) -> Tuple[str, str, Dict[str, str]]:
|
|
84 |
r"\1" + base64_data_uri + r"\2",
|
85 |
current_processed_markdown
|
86 |
)
|
|
|
87 |
elif not img_id.startswith(('http:', 'https:', 'data:')):
|
88 |
logger.warning(f"Page {page_idx}: Image ID '{img_id}' not in image data.")
|
89 |
|
90 |
processed_markdowns.append(current_processed_markdown)
|
91 |
|
|
|
92 |
return "\n\n".join(processed_markdowns), "\n\n".join(raw_markdowns), image_data_map
|
93 |
|
94 |
except Exception as e:
|
@@ -114,10 +144,9 @@ def perform_ocr_file(file_obj: Any) -> Tuple[str, str, Dict[str, str]]:
|
|
114 |
if file_ext == '.pdf':
|
115 |
try:
|
116 |
with open(file_path, "rb") as f:
|
117 |
-
file_content = f.read()
|
118 |
|
119 |
logger.info(f"Uploading PDF {file_name} to Mistral...")
|
120 |
-
# Use dictionary format as per documentation
|
121 |
uploaded_pdf = client.files.upload(
|
122 |
file={
|
123 |
"file_name": file_name,
|
@@ -134,6 +163,7 @@ def perform_ocr_file(file_obj: Any) -> Tuple[str, str, Dict[str, str]]:
|
|
134 |
document={"type": "document_url", "document_url": signed_url_response.url},
|
135 |
include_image_base64=True
|
136 |
)
|
|
|
137 |
finally:
|
138 |
if uploaded_file_id:
|
139 |
try:
|
@@ -155,12 +185,15 @@ def perform_ocr_file(file_obj: Any) -> Tuple[str, str, Dict[str, str]]:
|
|
155 |
document={"type": "image_url", "image_url": data_uri},
|
156 |
include_image_base64=True
|
157 |
)
|
|
|
158 |
|
159 |
else:
|
160 |
return f"Unsupported file type: '{file_name}'.", "", {}
|
161 |
|
162 |
if ocr_response:
|
163 |
-
|
|
|
|
|
164 |
return f"Error: OCR failed for '{file_name}'.", "", {}
|
165 |
|
166 |
except Exception as e:
|
@@ -173,11 +206,16 @@ def chunk_markdown(
|
|
173 |
chunk_overlap: int = 200,
|
174 |
strip_headers: bool = True
|
175 |
) -> List[Document]:
|
176 |
-
"""Chunks markdown text, preserving headers in metadata and extracting
|
177 |
if not markdown_text_with_images or not markdown_text_with_images.strip():
|
178 |
logger.warning("chunk_markdown received empty input.")
|
179 |
return []
|
180 |
|
|
|
|
|
|
|
|
|
|
|
181 |
headers_to_split_on = [
|
182 |
("#", "Header 1"), ("##", "Header 2"), ("###", "Header 3"),
|
183 |
("####", "Header 4"), ("#####", "Header 5"), ("######", "Header 6"),
|
@@ -185,47 +223,43 @@ def chunk_markdown(
|
|
185 |
markdown_splitter = MarkdownHeaderTextSplitter(
|
186 |
headers_to_split_on=headers_to_split_on, strip_headers=strip_headers
|
187 |
)
|
188 |
-
header_chunks = markdown_splitter.split_text(
|
189 |
|
190 |
if not header_chunks:
|
191 |
-
logger.warning("No chunks created
|
192 |
-
return []
|
193 |
|
194 |
final_chunks = []
|
195 |
if chunk_size > 0:
|
196 |
text_splitter = RecursiveCharacterTextSplitter(
|
197 |
-
chunk_size=chunk_size,
|
198 |
-
chunk_overlap=chunk_overlap,
|
199 |
-
length_function=len,
|
200 |
separators=["\n\n", "\n", "(?<=\. )", "(?<=\? )", "(?<=! )", ", ", "; ", " ", ""],
|
201 |
add_start_index=True
|
202 |
)
|
203 |
for i, header_chunk in enumerate(header_chunks):
|
204 |
-
if header_chunk.page_content
|
205 |
sub_chunks = text_splitter.split_documents([header_chunk])
|
206 |
final_chunks.extend(sub_chunks)
|
207 |
-
|
208 |
-
|
|
|
209 |
else:
|
210 |
final_chunks = [chunk for chunk in header_chunks if chunk.page_content]
|
211 |
|
212 |
-
#
|
213 |
for chunk in final_chunks:
|
214 |
if not hasattr(chunk, 'metadata'):
|
215 |
chunk.metadata = {}
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
)
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
logger.info(f"Created {len(final_chunks)} chunks with base64 metadata")
|
226 |
return final_chunks
|
227 |
|
228 |
-
|
229 |
def get_hf_token(explicit_token: str = None) -> str:
|
230 |
"""Retrieve Hugging Face token with fallback mechanisms."""
|
231 |
global hf_token_global
|
@@ -280,7 +314,7 @@ def process_file_and_save(
|
|
280 |
source_filename = getattr(file_obj, 'orig_name', os.path.basename(file_obj.name))
|
281 |
logger.info(f"--- Starting processing for file: {source_filename} ---")
|
282 |
|
283 |
-
processed_markdown,
|
284 |
if not processed_markdown or processed_markdown.startswith("Error:"):
|
285 |
return processed_markdown
|
286 |
|
|
|
45 |
"""Encodes image bytes to a base64 string."""
|
46 |
return base64.b64encode(image_bytes).decode('utf-8')
|
47 |
|
48 |
+
def extract_images_from_markdown(markdown_text: str) -> Dict[str, str]:
|
49 |
+
"""
|
50 |
+
Extracts base64 image data URIs from markdown and maps them to reference IDs.
|
51 |
+
Returns a dictionary mapping reference IDs to base64 data URIs.
|
52 |
+
"""
|
53 |
+
image_map = {}
|
54 |
+
img_refs = re.findall(r"!\[.*?\]\((data:image/[a-zA-Z+]+;base64,[A-Za-z0-9+/=]+)\)", markdown_text)
|
55 |
+
for idx, img_uri in enumerate(img_refs):
|
56 |
+
ref_id = f"img_ref_{idx+1}"
|
57 |
+
image_map[ref_id] = img_uri
|
58 |
+
return image_map
|
59 |
+
|
60 |
+
def replace_image_references(markdown_text: str, image_map: Dict[str, str]) -> str:
|
61 |
+
"""
|
62 |
+
Replaces base64 image data URIs in markdown with reference IDs (e.g., img_ref_1).
|
63 |
+
"""
|
64 |
+
updated_markdown = markdown_text
|
65 |
+
for ref_id, img_uri in image_map.items():
|
66 |
+
escaped_uri = re.escape(img_uri)
|
67 |
+
pattern = r"(!\[.*?\]\()" + escaped_uri + r"(\))"
|
68 |
+
updated_markdown = re.sub(pattern, f"\\1{ref_id}\\2", updated_markdown)
|
69 |
+
return updated_markdown
|
70 |
+
|
71 |
def get_combined_markdown(ocr_response: Any) -> Tuple[str, str, Dict[str, str]]:
|
72 |
"""Combines markdown from OCR pages, replacing image IDs with base64 data URIs."""
|
73 |
processed_markdowns = []
|
|
|
81 |
try:
|
82 |
for page_idx, page in enumerate(ocr_response.pages):
|
83 |
if hasattr(page, 'images') and page.images:
|
84 |
+
logger.info(f"Page {page_idx}: Found {len(page.images)} images.")
|
85 |
for img in page.images:
|
86 |
if hasattr(img, 'id') and hasattr(img, 'image_base64') and img.image_base64:
|
87 |
image_data_map[img.id] = img.image_base64
|
88 |
+
logger.debug(f"Page {page_idx}: Image ID {img.id} added to image_data_map.")
|
89 |
else:
|
90 |
+
logger.warning(f"Page {page_idx}: Image object lacks 'id' or valid 'image_base64'. Image: {img}")
|
91 |
+
else:
|
92 |
+
logger.info(f"Page {page_idx}: No images found.")
|
93 |
+
|
94 |
if not hasattr(page, 'markdown'):
|
95 |
logger.warning(f"Page {page_idx} lacks 'markdown' attribute. Skipping.")
|
96 |
continue
|
|
|
100 |
current_processed_markdown = current_raw_markdown
|
101 |
|
102 |
img_refs = re.findall(r"!\[.*?\]\((.*?)\)", current_processed_markdown)
|
103 |
+
logger.debug(f"Page {page_idx}: Found {len(img_refs)} image references in markdown.")
|
104 |
for img_id in img_refs:
|
105 |
if img_id in image_data_map:
|
106 |
base64_data_uri = image_data_map[img_id]
|
|
|
112 |
r"\1" + base64_data_uri + r"\2",
|
113 |
current_processed_markdown
|
114 |
)
|
115 |
+
logger.debug(f"Page {page_idx}: Replaced image ID {img_id} with base64 data URI.")
|
116 |
elif not img_id.startswith(('http:', 'https:', 'data:')):
|
117 |
logger.warning(f"Page {page_idx}: Image ID '{img_id}' not in image data.")
|
118 |
|
119 |
processed_markdowns.append(current_processed_markdown)
|
120 |
|
121 |
+
logger.info(f"Processed {len(processed_markdowns)} pages with {len(image_data_map)} images.")
|
122 |
return "\n\n".join(processed_markdowns), "\n\n".join(raw_markdowns), image_data_map
|
123 |
|
124 |
except Exception as e:
|
|
|
144 |
if file_ext == '.pdf':
|
145 |
try:
|
146 |
with open(file_path, "rb") as f:
|
147 |
+
file_content = f.read()
|
148 |
|
149 |
logger.info(f"Uploading PDF {file_name} to Mistral...")
|
|
|
150 |
uploaded_pdf = client.files.upload(
|
151 |
file={
|
152 |
"file_name": file_name,
|
|
|
163 |
document={"type": "document_url", "document_url": signed_url_response.url},
|
164 |
include_image_base64=True
|
165 |
)
|
166 |
+
logger.info(f"OCR response received: {ocr_response}")
|
167 |
finally:
|
168 |
if uploaded_file_id:
|
169 |
try:
|
|
|
185 |
document={"type": "image_url", "image_url": data_uri},
|
186 |
include_image_base64=True
|
187 |
)
|
188 |
+
logger.info(f"OCR response received: {ocr_response}")
|
189 |
|
190 |
else:
|
191 |
return f"Unsupported file type: '{file_name}'.", "", {}
|
192 |
|
193 |
if ocr_response:
|
194 |
+
processed_md, raw_md, img_map = get_combined_markdown(ocr_response)
|
195 |
+
logger.info(f"Processed markdown length: {len(processed_md)}")
|
196 |
+
return processed_md, raw_md, img_map
|
197 |
return f"Error: OCR failed for '{file_name}'.", "", {}
|
198 |
|
199 |
except Exception as e:
|
|
|
206 |
chunk_overlap: int = 200,
|
207 |
strip_headers: bool = True
|
208 |
) -> List[Document]:
|
209 |
+
"""Chunks markdown text, preserving headers in metadata and extracting images."""
|
210 |
if not markdown_text_with_images or not markdown_text_with_images.strip():
|
211 |
logger.warning("chunk_markdown received empty input.")
|
212 |
return []
|
213 |
|
214 |
+
# Extract images and replace with reference IDs
|
215 |
+
image_map = extract_images_from_markdown(markdown_text_with_images)
|
216 |
+
updated_markdown = replace_image_references(markdown_text_with_images, image_map)
|
217 |
+
logger.info(f"Extracted {len(image_map)} images from markdown.")
|
218 |
+
|
219 |
headers_to_split_on = [
|
220 |
("#", "Header 1"), ("##", "Header 2"), ("###", "Header 3"),
|
221 |
("####", "Header 4"), ("#####", "Header 5"), ("######", "Header 6"),
|
|
|
223 |
markdown_splitter = MarkdownHeaderTextSplitter(
|
224 |
headers_to_split_on=headers_to_split_on, strip_headers=strip_headers
|
225 |
)
|
226 |
+
header_chunks = markdown_splitter.split_text(updated_markdown)
|
227 |
|
228 |
if not header_chunks:
|
229 |
+
logger.warning("No header chunks created. Treating entire text as one chunk.")
|
230 |
+
return [Document(page_content=updated_markdown, metadata={"images_base64": list(image_map.values())})]
|
231 |
|
232 |
final_chunks = []
|
233 |
if chunk_size > 0:
|
234 |
text_splitter = RecursiveCharacterTextSplitter(
|
235 |
+
chunk_size=chunk_size, chunk_overlap=chunk_overlap, length_function=len,
|
|
|
|
|
236 |
separators=["\n\n", "\n", "(?<=\. )", "(?<=\? )", "(?<=! )", ", ", "; ", " ", ""],
|
237 |
add_start_index=True
|
238 |
)
|
239 |
for i, header_chunk in enumerate(header_chunks):
|
240 |
+
if header_chunk.page_content:
|
241 |
sub_chunks = text_splitter.split_documents([header_chunk])
|
242 |
final_chunks.extend(sub_chunks)
|
243 |
+
logger.debug(f"Header chunk {i}: Split into {len(sub_chunks)} sub-chunks.")
|
244 |
+
else:
|
245 |
+
logger.debug(f"Header chunk {i}: Empty, skipping.")
|
246 |
else:
|
247 |
final_chunks = [chunk for chunk in header_chunks if chunk.page_content]
|
248 |
|
249 |
+
# Add image references to metadata for each chunk
|
250 |
for chunk in final_chunks:
|
251 |
if not hasattr(chunk, 'metadata'):
|
252 |
chunk.metadata = {}
|
253 |
+
# Find image references in this chunk
|
254 |
+
chunk_img_refs = re.findall(r"!\[.*?\]\((img_ref_\d+)\)", chunk.page_content)
|
255 |
+
chunk_images = [image_map[ref_id] for ref_id in chunk_img_refs if ref_id in image_map]
|
256 |
+
chunk.metadata["images_base64"] = chunk_images
|
257 |
+
chunk.metadata["image_references"] = chunk_img_refs
|
258 |
+
logger.debug(f"Chunk {chunk.metadata.get('start_index', 'unknown')}: Found {len(chunk_images)} images.")
|
259 |
+
|
260 |
+
logger.info(f"Created {len(final_chunks)} final chunks.")
|
|
|
|
|
261 |
return final_chunks
|
262 |
|
|
|
263 |
def get_hf_token(explicit_token: str = None) -> str:
|
264 |
"""Retrieve Hugging Face token with fallback mechanisms."""
|
265 |
global hf_token_global
|
|
|
314 |
source_filename = getattr(file_obj, 'orig_name', os.path.basename(file_obj.name))
|
315 |
logger.info(f"--- Starting processing for file: {source_filename} ---")
|
316 |
|
317 |
+
processed_markdown, raw_markdown, img_map = perform_ocr_file(file_obj)
|
318 |
if not processed_markdown or processed_markdown.startswith("Error:"):
|
319 |
return processed_markdown
|
320 |
|