Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,215 +1,619 @@
|
|
1 |
import gradio as gr
|
2 |
from langchain_text_splitters import MarkdownHeaderTextSplitter, RecursiveCharacterTextSplitter
|
3 |
from langchain.schema import Document
|
4 |
-
from typing import List, Dict, Any
|
5 |
import logging
|
6 |
import re
|
7 |
-
from pathlib import Path
|
8 |
-
import requests
|
9 |
import base64
|
10 |
-
import
|
11 |
-
from PIL import Image
|
12 |
from datasets import Dataset
|
13 |
from huggingface_hub import HfApi
|
|
|
14 |
import os
|
15 |
-
from mistralai import Mistral
|
16 |
|
17 |
# Configure logging
|
18 |
-
logging.basicConfig(level=logging.INFO)
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
21 |
-
# Mistral OCR
|
22 |
api_key = os.environ.get("MISTRAL_API_KEY")
|
23 |
if not api_key:
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
#
|
28 |
-
|
|
|
29 |
try:
|
30 |
-
|
31 |
-
|
32 |
-
except FileNotFoundError:
|
33 |
-
return "Error: The file was not found."
|
34 |
except Exception as e:
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
markdown_str = markdown_str.replace(f"", f"")
|
41 |
-
return markdown_str
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
raw_markdowns = []
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
return "\n\n".join(markdowns), "\n\n".join(raw_markdowns), image_data
|
54 |
-
|
55 |
-
# Perform OCR on uploaded file
|
56 |
-
def perform_ocr_file(file):
|
57 |
try:
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
except Exception as e:
|
93 |
-
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
-
# Function to chunk markdown text with image handling
|
102 |
def chunk_markdown(
|
103 |
-
|
104 |
-
image_data: Dict[str, str],
|
105 |
chunk_size: int = 1000,
|
106 |
chunk_overlap: int = 200,
|
107 |
strip_headers: bool = True
|
108 |
) -> List[Document]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
try:
|
110 |
-
# Define headers to split on
|
111 |
headers_to_split_on = [
|
112 |
("#", "Header 1"),
|
113 |
("##", "Header 2"),
|
114 |
("###", "Header 3"),
|
|
|
|
|
|
|
115 |
]
|
116 |
-
|
117 |
# Initialize MarkdownHeaderTextSplitter
|
118 |
markdown_splitter = MarkdownHeaderTextSplitter(
|
119 |
headers_to_split_on=headers_to_split_on,
|
120 |
-
strip_headers=strip_headers
|
|
|
121 |
)
|
122 |
-
|
123 |
-
# Split markdown by headers
|
124 |
-
logger.info("Splitting markdown by headers")
|
125 |
-
chunks = markdown_splitter.split_text(markdown_text)
|
126 |
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
if chunk_size > 0:
|
129 |
text_splitter = RecursiveCharacterTextSplitter(
|
130 |
chunk_size=chunk_size,
|
131 |
chunk_overlap=chunk_overlap,
|
132 |
length_function=len,
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
136 |
)
|
137 |
-
logger.info(f"Applying character
|
138 |
-
|
139 |
-
for
|
140 |
-
if
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
else:
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
except Exception as e:
|
160 |
-
logger.error(f"Error
|
161 |
-
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
-
# Process file: OCR -> Chunk -> Save
|
164 |
-
def process_file_and_save(file, chunk_size, chunk_overlap, strip_headers, hf_token, repo_name):
|
165 |
try:
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
#
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
data: Dict[str, List[Any]] = {
|
176 |
"chunk_id": [],
|
177 |
-
"
|
178 |
"metadata": [],
|
|
|
179 |
}
|
180 |
-
|
181 |
for i, chunk in enumerate(chunks):
|
182 |
-
|
183 |
-
data["
|
184 |
-
data["
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
except Exception as e:
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
-
# Gradio Interface
|
197 |
-
with gr.Blocks(title="PDF/Image OCR, Markdown Chunking, and Dataset Creator") as demo:
|
198 |
-
gr.Markdown("# PDF/Image OCR, Markdown Chunking, and Dataset Creator")
|
199 |
-
gr.Markdown("Upload a PDF or image, extract text/images with Mistral OCR, chunk the markdown by headers, and save to Hugging Face.")
|
200 |
-
|
201 |
with gr.Row():
|
202 |
-
with gr.Column():
|
203 |
-
file_input = gr.File(
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
submit_btn.click(
|
215 |
fn=process_file_and_save,
|
@@ -217,4 +621,32 @@ with gr.Blocks(title="PDF/Image OCR, Markdown Chunking, and Dataset Creator") as
|
|
217 |
outputs=output
|
218 |
)
|
219 |
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from langchain_text_splitters import MarkdownHeaderTextSplitter, RecursiveCharacterTextSplitter
|
3 |
from langchain.schema import Document
|
4 |
+
from typing import List, Dict, Any, Tuple
|
5 |
import logging
|
6 |
import re
|
|
|
|
|
7 |
import base64
|
8 |
+
import mimetypes # Added
|
|
|
9 |
from datasets import Dataset
|
10 |
from huggingface_hub import HfApi
|
11 |
+
import huggingface_hub # Added for token checking and errors
|
12 |
import os
|
13 |
+
from mistralai import Mistral # Assuming this is the correct import for the client
|
14 |
|
15 |
# Configure logging
|
16 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
+
# --- Mistral OCR Setup ---
|
20 |
api_key = os.environ.get("MISTRAL_API_KEY")
|
21 |
if not api_key:
|
22 |
+
logger.warning("MISTRAL_API_KEY environment variable not set. Attempting to use Hugging Face token.")
|
23 |
+
try:
|
24 |
+
api_key = huggingface_hub.get_token()
|
25 |
+
if not api_key:
|
26 |
+
# If running locally, this might still fail if not logged in.
|
27 |
+
logger.warning("Could not retrieve token from Hugging Face login.")
|
28 |
+
# Error will be raised later if client init fails or during HF push if token still missing
|
29 |
+
else:
|
30 |
+
logger.info("Using Hugging Face token as MISTRAL_API_KEY.")
|
31 |
+
except Exception as e:
|
32 |
+
logger.warning(f"Could not check Hugging Face login for token: {e}")
|
33 |
+
# Proceed without API key, client initialization might fail
|
34 |
|
35 |
+
# Initialize Mistral Client
|
36 |
+
client = None
|
37 |
+
if api_key:
|
38 |
try:
|
39 |
+
client = Mistral(api_key=api_key)
|
40 |
+
logger.info("Mistral client initialized successfully.")
|
|
|
|
|
41 |
except Exception as e:
|
42 |
+
logger.error(f"Failed to initialize Mistral client: {e}", exc_info=True)
|
43 |
+
# Raise a clearer error for Gradio startup if client fails
|
44 |
+
raise RuntimeError(f"Failed to initialize Mistral client. Check API key and mistralai installation. Error: {e}")
|
45 |
+
else:
|
46 |
+
# This path might be hit if no env var and no HF token found
|
47 |
+
logger.error("Mistral API key is not available. OCR functionality will fail.")
|
48 |
+
# We could raise an error here, or let it fail when client methods are called.
|
49 |
+
# Let's allow Gradio to load but OCR will fail clearly later.
|
50 |
+
|
51 |
+
|
52 |
+
# --- Helper Functions ---
|
53 |
|
54 |
+
def encode_image_bytes(image_bytes: bytes) -> str:
|
55 |
+
"""Encodes image bytes to a base64 string."""
|
56 |
+
return base64.b64encode(image_bytes).decode('utf-8')
|
|
|
|
|
57 |
|
58 |
+
def get_combined_markdown(ocr_response: Any) -> Tuple[str, str, Dict[str, str]]:
|
59 |
+
"""
|
60 |
+
Combines markdown from OCR pages, replacing image IDs with base64 data URIs.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
ocr_response: The response object from the Mistral OCR API.
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
A tuple containing:
|
67 |
+
- combined_markdown_with_images: Markdown string with image references replaced by base64 data URIs.
|
68 |
+
- combined_raw_markdown: Original markdown string without image replacement.
|
69 |
+
- image_data_map: A dictionary mapping image IDs to their base64 data URIs.
|
70 |
+
Raises ValueError on unexpected response structure.
|
71 |
+
"""
|
72 |
+
processed_markdowns = []
|
73 |
raw_markdowns = []
|
74 |
+
image_data_map = {} # Collect image_id -> base64_data_uri
|
75 |
+
|
76 |
+
if not hasattr(ocr_response, 'pages') or not ocr_response.pages:
|
77 |
+
logger.warning("OCR response has no 'pages' attribute or pages list is empty.")
|
78 |
+
return "", "", {}
|
79 |
+
|
|
|
|
|
|
|
|
|
80 |
try:
|
81 |
+
# Collect all image data first (assuming image_base64 includes data URI prefix from Mistral)
|
82 |
+
for page_idx, page in enumerate(ocr_response.pages):
|
83 |
+
if hasattr(page, 'images') and page.images:
|
84 |
+
for img in page.images:
|
85 |
+
if hasattr(img, 'id') and hasattr(img, 'image_base64') and img.image_base64:
|
86 |
+
image_data_map[img.id] = img.image_base64 # Assuming this is the full data URI
|
87 |
+
else:
|
88 |
+
logger.warning(f"Page {page_idx}: Image object lacks 'id' or valid 'image_base64'. Image: {img}")
|
89 |
+
# else: # Don't warn if a page simply has no images
|
90 |
+
# logger.debug(f"Page {page_idx} has no 'images' attribute or no images found.")
|
91 |
+
|
92 |
+
|
93 |
+
# Process markdown for each page
|
94 |
+
for page_idx, page in enumerate(ocr_response.pages):
|
95 |
+
if not hasattr(page, 'markdown'):
|
96 |
+
logger.warning(f"Page {page_idx} in OCR response lacks 'markdown' attribute. Skipping.")
|
97 |
+
continue # Skip page if no markdown
|
98 |
+
|
99 |
+
current_raw_markdown = page.markdown if page.markdown else ""
|
100 |
+
raw_markdowns.append(current_raw_markdown)
|
101 |
+
current_processed_markdown = current_raw_markdown
|
102 |
+
|
103 |
+
# Find all image references like 
|
104 |
+
# Regex to find the image ID (content within parentheses)
|
105 |
+
img_refs = re.findall(r"!\[.*?\]\((.*?)\)", current_processed_markdown)
|
106 |
+
for img_id in img_refs:
|
107 |
+
if img_id in image_data_map:
|
108 |
+
base64_data_uri = image_data_map[img_id]
|
109 |
+
# Escape potential regex special characters in img_id before using in replace
|
110 |
+
escaped_img_id = re.escape(img_id)
|
111 |
+
# Replace  with 
|
112 |
+
# Use a specific regex for replacement: find the exact pattern 
|
113 |
+
pattern = r"(!\[.*?\]\()" + escaped_img_id + r"(\))"
|
114 |
+
# Check if replacement target exists before replacing
|
115 |
+
if re.search(pattern, current_processed_markdown):
|
116 |
+
current_processed_markdown = re.sub(
|
117 |
+
pattern,
|
118 |
+
r"\1" + base64_data_uri + r"\2",
|
119 |
+
current_processed_markdown
|
120 |
+
)
|
121 |
+
else:
|
122 |
+
# This case shouldn't happen often if img_id came from findall on the same string
|
123 |
+
logger.warning(f"Page {page_idx}: Found img_id '{img_id}' but couldn't find exact pattern '{pattern}' for replacement.")
|
124 |
|
125 |
+
else:
|
126 |
+
# Only log warning if the ID looks like an expected image ID pattern (e.g., 'image_X')
|
127 |
+
# Avoid warning for regular URLs that might be in the markdown
|
128 |
+
if not img_id.startswith(('http:', 'https:', 'data:')): # Check if it's not already a URL
|
129 |
+
logger.warning(f"Page {page_idx}: Image ID '{img_id}' found in markdown but not in collected image data.")
|
130 |
+
|
131 |
+
processed_markdowns.append(current_processed_markdown)
|
132 |
+
|
133 |
+
return "\n\n".join(processed_markdowns), "\n\n".join(raw_markdowns), image_data_map
|
134 |
+
|
135 |
+
except AttributeError as ae:
|
136 |
+
logger.error(f"Attribute error accessing OCR response structure: {ae}", exc_info=True)
|
137 |
+
raise ValueError(f"Unexpected OCR response structure. Check Mistral API changes. Error: {ae}")
|
138 |
except Exception as e:
|
139 |
+
logger.error(f"Error processing OCR response markdown: {e}", exc_info=True)
|
140 |
+
raise
|
141 |
|
142 |
+
def perform_ocr_file(file_obj: Any) -> Tuple[str, str, Dict[str, str]]:
|
143 |
+
"""
|
144 |
+
Performs OCR on an uploaded file (PDF or image) using the Mistral API.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
file_obj: The file object from Gradio's gr.File component.
|
148 |
+
|
149 |
+
Returns:
|
150 |
+
A tuple containing:
|
151 |
+
- processed_markdown: Markdown string with base64 images, or error message.
|
152 |
+
- raw_markdown: Original markdown string.
|
153 |
+
- image_data_map: Dictionary mapping image IDs to base64 data URIs.
|
154 |
+
"""
|
155 |
+
if not client:
|
156 |
+
return "Error: Mistral client not initialized. Check API key setup.", "", {}
|
157 |
+
if not file_obj:
|
158 |
+
# This check might be redundant if called from process_file_and_save, but good practice
|
159 |
+
return "Error: No file provided to OCR function.", "", {}
|
160 |
+
|
161 |
+
try:
|
162 |
+
file_path = file_obj.name # Get the temporary file path from Gradio
|
163 |
+
# Use the original filename if available (Gradio>=4), else use the temp path's basename
|
164 |
+
file_name = getattr(file_obj, 'orig_name', os.path.basename(file_path))
|
165 |
+
logger.info(f"Performing OCR on file: {file_name} (temp path: {file_path})")
|
166 |
+
|
167 |
+
# Determine file type from extension
|
168 |
+
file_ext = os.path.splitext(file_name)[1].lower()
|
169 |
+
|
170 |
+
ocr_response = None
|
171 |
+
uploaded_file_id = None
|
172 |
+
|
173 |
+
if file_ext == '.pdf':
|
174 |
+
try:
|
175 |
+
with open(file_path, "rb") as f:
|
176 |
+
logger.info(f"Uploading PDF {file_name} to Mistral...")
|
177 |
+
# Pass as tuple (filename, file-like object)
|
178 |
+
uploaded_pdf = client.files.upload(
|
179 |
+
file=(file_name, f),
|
180 |
+
purpose="ocr"
|
181 |
+
)
|
182 |
+
uploaded_file_id = uploaded_pdf.id
|
183 |
+
logger.info(f"PDF uploaded successfully. File ID: {uploaded_file_id}")
|
184 |
+
|
185 |
+
logger.info(f"Getting signed URL for file ID: {uploaded_file_id}")
|
186 |
+
signed_url_response = client.files.get_signed_url(file_id=uploaded_file_id)
|
187 |
+
logger.info(f"Got signed URL: {signed_url_response.url[:50]}...")
|
188 |
+
|
189 |
+
logger.info("Sending PDF URL to Mistral OCR (model: mistral-ocr-latest)...")
|
190 |
+
ocr_response = client.ocr.process(
|
191 |
+
model="mistral-ocr-latest",
|
192 |
+
document={
|
193 |
+
"type": "document_url",
|
194 |
+
"document_url": signed_url_response.url,
|
195 |
+
},
|
196 |
+
include_image_base64=True
|
197 |
+
)
|
198 |
+
logger.info("OCR processing complete for PDF.")
|
199 |
+
|
200 |
+
finally:
|
201 |
+
# Ensure cleanup even if OCR fails after upload
|
202 |
+
if uploaded_file_id:
|
203 |
+
try:
|
204 |
+
logger.info(f"Deleting temporary Mistral file: {uploaded_file_id}")
|
205 |
+
client.files.delete(file_id=uploaded_file_id)
|
206 |
+
except Exception as delete_err:
|
207 |
+
logger.warning(f"Failed to delete temporary Mistral file {uploaded_file_id}: {delete_err}")
|
208 |
+
|
209 |
+
elif file_ext in ['.png', '.jpg', '.jpeg', '.webp', '.bmp']:
|
210 |
+
try:
|
211 |
+
with open(file_path, "rb") as f:
|
212 |
+
image_bytes = f.read()
|
213 |
+
|
214 |
+
if not image_bytes:
|
215 |
+
return f"Error: Uploaded image file '{file_name}' is empty.", "", {}
|
216 |
+
|
217 |
+
base64_encoded_image = encode_image_bytes(image_bytes)
|
218 |
+
|
219 |
+
# Determine MIME type
|
220 |
+
mime_type, _ = mimetypes.guess_type(file_path)
|
221 |
+
if not mime_type or not mime_type.startswith('image'):
|
222 |
+
logger.warning(f"Could not determine MIME type for {file_name} using extension. Defaulting to image/jpeg.")
|
223 |
+
mime_type = 'image/jpeg' # Fallback
|
224 |
+
|
225 |
+
data_uri = f"data:{mime_type};base64,{base64_encoded_image}"
|
226 |
+
logger.info(f"Sending image {file_name} ({mime_type}) as data URI to Mistral OCR (model: mistral-ocr-latest)...")
|
227 |
+
|
228 |
+
ocr_response = client.ocr.process(
|
229 |
+
model="mistral-ocr-latest",
|
230 |
+
document={
|
231 |
+
"type": "image_url",
|
232 |
+
"image_url": data_uri
|
233 |
+
},
|
234 |
+
include_image_base64=True
|
235 |
+
)
|
236 |
+
logger.info(f"OCR processing complete for image {file_name}.")
|
237 |
+
except Exception as img_ocr_err:
|
238 |
+
logger.error(f"Error during image OCR for {file_name}: {img_ocr_err}", exc_info=True)
|
239 |
+
return f"Error during OCR for image '{file_name}': {img_ocr_err}", "", {}
|
240 |
+
|
241 |
+
else:
|
242 |
+
unsupported_msg = f"Unsupported file type: '{file_name}'. Please provide a PDF or an image (png, jpg, jpeg, webp, bmp)."
|
243 |
+
logger.warning(unsupported_msg)
|
244 |
+
return unsupported_msg, "", {}
|
245 |
+
|
246 |
+
# Process the OCR response (common path for PDF/Image)
|
247 |
+
if ocr_response:
|
248 |
+
logger.info("Processing OCR response to combine markdown and images...")
|
249 |
+
processed_md, raw_md, img_map = get_combined_markdown(ocr_response)
|
250 |
+
logger.info("Markdown and image data extraction complete.")
|
251 |
+
return processed_md, raw_md, img_map
|
252 |
+
else:
|
253 |
+
# This case might occur if OCR processing itself failed silently or returned None
|
254 |
+
logger.error(f"OCR processing for '{file_name}' did not return a valid response.")
|
255 |
+
return f"Error: OCR processing failed for '{file_name}'. No response received.", "", {}
|
256 |
+
|
257 |
+
except FileNotFoundError:
|
258 |
+
logger.error(f"Temporary file not found: {file_path}", exc_info=True)
|
259 |
+
return f"Error: Could not read the uploaded file '{file_name}'. Ensure it uploaded correctly.", "", {}
|
260 |
+
except Exception as e:
|
261 |
+
logger.error(f"Unexpected error during OCR processing file {file_name}: {e}", exc_info=True)
|
262 |
+
# Provide more context in the error message returned to the user
|
263 |
+
return f"Error during OCR processing for '{file_name}': {str(e)}", "", {}
|
264 |
|
|
|
265 |
def chunk_markdown(
|
266 |
+
markdown_text_with_images: str,
|
|
|
267 |
chunk_size: int = 1000,
|
268 |
chunk_overlap: int = 200,
|
269 |
strip_headers: bool = True
|
270 |
) -> List[Document]:
|
271 |
+
"""
|
272 |
+
Chunks markdown text, preserving headers in metadata and adding embedded image info.
|
273 |
+
|
274 |
+
Args:
|
275 |
+
markdown_text_with_images: The markdown string containing base64 data URIs for images.
|
276 |
+
chunk_size: The target size for chunks (characters). 0 to disable recursive splitting.
|
277 |
+
chunk_overlap: The overlap between consecutive chunks (characters).
|
278 |
+
strip_headers: Whether to remove header syntax (e.g., '# ') from the chunk content.
|
279 |
+
|
280 |
+
Returns:
|
281 |
+
A list of Langchain Document objects representing the chunks. Returns empty list if input is empty.
|
282 |
+
"""
|
283 |
+
if not markdown_text_with_images or not markdown_text_with_images.strip():
|
284 |
+
logger.warning("chunk_markdown received empty or whitespace-only input string.")
|
285 |
+
return []
|
286 |
try:
|
|
|
287 |
headers_to_split_on = [
|
288 |
("#", "Header 1"),
|
289 |
("##", "Header 2"),
|
290 |
("###", "Header 3"),
|
291 |
+
("####", "Header 4"),
|
292 |
+
("#####", "Header 5"), # Added more levels
|
293 |
+
("######", "Header 6"),
|
294 |
]
|
|
|
295 |
# Initialize MarkdownHeaderTextSplitter
|
296 |
markdown_splitter = MarkdownHeaderTextSplitter(
|
297 |
headers_to_split_on=headers_to_split_on,
|
298 |
+
strip_headers=strip_headers,
|
299 |
+
return_each_line=False # Process blocks
|
300 |
)
|
|
|
|
|
|
|
|
|
301 |
|
302 |
+
logger.info("Splitting markdown by headers...")
|
303 |
+
header_chunks = markdown_splitter.split_text(markdown_text_with_images)
|
304 |
+
logger.info(f"Split into {len(header_chunks)} chunks based on headers.")
|
305 |
+
|
306 |
+
if not header_chunks:
|
307 |
+
logger.warning("MarkdownHeaderTextSplitter returned zero chunks.")
|
308 |
+
# Maybe the input had no headers? Treat the whole text as one chunk?
|
309 |
+
# Or just return empty? Let's return empty for now, as header splitting is intended.
|
310 |
+
# Alternative: create a single Document if header_chunks is empty but input wasn't.
|
311 |
+
# doc = Document(page_content=markdown_text_with_images, metadata={})
|
312 |
+
# header_chunks = [doc]
|
313 |
+
# logger.info("No headers found, treating input as a single chunk.")
|
314 |
+
# For now, stick to returning empty list if no header chunks are made.
|
315 |
+
return []
|
316 |
+
|
317 |
+
|
318 |
+
final_chunks = []
|
319 |
+
# If chunk_size is specified and > 0, further split large chunks
|
320 |
if chunk_size > 0:
|
321 |
text_splitter = RecursiveCharacterTextSplitter(
|
322 |
chunk_size=chunk_size,
|
323 |
chunk_overlap=chunk_overlap,
|
324 |
length_function=len,
|
325 |
+
# More robust separators
|
326 |
+
separators=["\n\n", "\n", "(?<=\. )", "(?<=\? )", "(?<=! )", ", ", "; ", " ", ""],
|
327 |
+
keep_separator=False,
|
328 |
+
add_start_index=True # Add start index relative to the parent (header) chunk
|
329 |
)
|
330 |
+
logger.info(f"Applying recursive character splitting (size={chunk_size}, overlap={chunk_overlap})...")
|
331 |
+
processed_chunks_count = 0
|
332 |
+
for i, header_chunk in enumerate(header_chunks):
|
333 |
+
# Check if page_content exists and is longer than chunk_size
|
334 |
+
if header_chunk.page_content and len(header_chunk.page_content) > chunk_size:
|
335 |
+
logger.debug(f"Header chunk {i} (length {len(header_chunk.page_content)}) needs recursive splitting.")
|
336 |
+
try:
|
337 |
+
# split_documents preserves metadata from the parent chunk
|
338 |
+
sub_chunks = text_splitter.split_documents([header_chunk])
|
339 |
+
final_chunks.extend(sub_chunks)
|
340 |
+
processed_chunks_count += len(sub_chunks)
|
341 |
+
logger.debug(f" -> Split into {len(sub_chunks)} sub-chunks.")
|
342 |
+
except Exception as split_err:
|
343 |
+
logger.error(f"Error splitting header chunk {i}: {split_err}", exc_info=True)
|
344 |
+
# Option: Add the original large chunk instead? Or skip? Let's skip broken ones.
|
345 |
+
logger.warning(f"Skipping header chunk {i} due to splitting error.")
|
346 |
+
continue
|
347 |
else:
|
348 |
+
# If the chunk is already small enough or empty, just add it
|
349 |
+
if header_chunk.page_content: # Add only if it has content
|
350 |
+
final_chunks.append(header_chunk)
|
351 |
+
processed_chunks_count += 1
|
352 |
+
logger.debug(f"Header chunk {i} (length {len(header_chunk.page_content)}) kept as is.")
|
353 |
+
else:
|
354 |
+
logger.debug(f"Header chunk {i} was empty, skipping.")
|
355 |
+
logger.info(f"Recursive character splitting finished. Processed {processed_chunks_count} chunks.")
|
356 |
+
else:
|
357 |
+
# If chunk_size is 0, use only non-empty header chunks
|
358 |
+
logger.info("chunk_size is 0, using only non-empty header-based chunks.")
|
359 |
+
final_chunks = [chunk for chunk in header_chunks if chunk.page_content]
|
360 |
+
|
361 |
+
|
362 |
+
# Post-process final chunks: Extract embedded image data URIs and add to metadata
|
363 |
+
logger.info("Extracting embedded image data URIs for final chunk metadata...")
|
364 |
+
for chunk in final_chunks:
|
365 |
+
images_in_chunk = []
|
366 |
+
if chunk.page_content:
|
367 |
+
try:
|
368 |
+
# Regex to find all base64 data URIs in the chunk content
|
369 |
+
# Non-greedy alt text `.*?`, robust base64 chars `[A-Za-z0-9+/=]+`
|
370 |
+
# Ensure the closing parenthesis `\)` is matched correctly
|
371 |
+
pattern = r"!\[.*?\]\((data:image/[a-zA-Z+]+;base64,[A-Za-z0-9+/=]+)\)"
|
372 |
+
images_in_chunk = re.findall(pattern, chunk.page_content)
|
373 |
+
except Exception as regex_err:
|
374 |
+
logger.error(f"Regex error extracting images from chunk: {regex_err}", exc_info=True)
|
375 |
+
# Leave images list empty for this chunk
|
376 |
+
|
377 |
+
# Ensure metadata exists and add images list (can be empty)
|
378 |
+
if not hasattr(chunk, 'metadata'):
|
379 |
+
chunk.metadata = {}
|
380 |
+
chunk.metadata["images_base64"] = images_in_chunk # Use a more specific key name
|
381 |
+
|
382 |
+
logger.info(f"Created {len(final_chunks)} final chunks after processing and filtering.")
|
383 |
+
return final_chunks
|
384 |
+
|
385 |
except Exception as e:
|
386 |
+
logger.error(f"Error during markdown chunking process: {str(e)}", exc_info=True)
|
387 |
+
raise # Re-raise to be caught by the main processing function
|
388 |
+
|
389 |
+
# --- Main Processing Function ---
|
390 |
+
|
391 |
+
def process_file_and_save(
|
392 |
+
file_obj: Any, # Gradio File object
|
393 |
+
chunk_size: int,
|
394 |
+
chunk_overlap: int,
|
395 |
+
strip_headers: bool,
|
396 |
+
hf_token: str,
|
397 |
+
repo_name: str
|
398 |
+
) -> str:
|
399 |
+
"""
|
400 |
+
Orchestrates the OCR, chunking, and saving process to Hugging Face Hub.
|
401 |
+
|
402 |
+
Args:
|
403 |
+
file_obj: The uploaded file object from Gradio.
|
404 |
+
chunk_size: Max chunk size for text splitting (chars). 0 disables recursive splitting.
|
405 |
+
chunk_overlap: Overlap for text splitting (chars).
|
406 |
+
strip_headers: Whether to remove markdown headers from chunk content.
|
407 |
+
hf_token: Hugging Face API token (write permission).
|
408 |
+
repo_name: Name for the Hugging Face dataset repository (e.g., 'username/my-ocr-dataset').
|
409 |
+
|
410 |
+
Returns:
|
411 |
+
A string indicating success or failure, suitable for display in Gradio.
|
412 |
+
"""
|
413 |
+
# --- Input Validation ---
|
414 |
+
if not file_obj:
|
415 |
+
return "Error: No file uploaded. Please upload a PDF or image file."
|
416 |
+
if not repo_name or '/' not in repo_name:
|
417 |
+
return "Error: Invalid Hugging Face Repository Name. Use format 'username/dataset-name'."
|
418 |
+
|
419 |
+
# Validate chunking parameters
|
420 |
+
if chunk_size < 0:
|
421 |
+
logger.warning("Chunk size cannot be negative. Setting to 0 (header splits only).")
|
422 |
+
chunk_size = 0
|
423 |
+
if chunk_overlap < 0:
|
424 |
+
logger.warning("Chunk overlap cannot be negative. Setting to 0.")
|
425 |
+
chunk_overlap = 0
|
426 |
+
if chunk_size > 0 and chunk_overlap >= chunk_size:
|
427 |
+
logger.warning(f"Chunk overlap ({chunk_overlap}) >= chunk size ({chunk_size}). Adjusting overlap to {min(200, chunk_size // 2)}.")
|
428 |
+
chunk_overlap = min(200, chunk_size // 2) # Set a reasonable overlap
|
429 |
+
|
430 |
+
# Handle Hugging Face Token
|
431 |
+
if not hf_token:
|
432 |
+
logger.info("No explicit HF token provided. Trying to use token from local Hugging Face login.")
|
433 |
+
try:
|
434 |
+
hf_token = huggingface_hub.get_token()
|
435 |
+
if not hf_token:
|
436 |
+
return "Error: Hugging Face Token is required. Please provide a token or log in using `huggingface-cli login`."
|
437 |
+
logger.info("Using HF token from local login for dataset operations.")
|
438 |
+
except Exception as e:
|
439 |
+
logger.error(f"Error checking HF login for token: {e}", exc_info=True)
|
440 |
+
return f"Error: Hugging Face Token is required. Could not verify HF login: {e}"
|
441 |
|
|
|
|
|
442 |
try:
|
443 |
+
source_filename = getattr(file_obj, 'orig_name', os.path.basename(file_obj.name))
|
444 |
+
logger.info(f"--- Starting processing for file: {source_filename} ---")
|
445 |
+
|
446 |
+
# --- Step 1: Perform OCR ---
|
447 |
+
logger.info("Step 1: Performing OCR...")
|
448 |
+
processed_markdown, _, _ = perform_ocr_file(file_obj) # raw_markdown and image_map not directly used later
|
449 |
+
|
450 |
+
# Check if OCR returned an error message or was empty/invalid
|
451 |
+
if not processed_markdown or isinstance(processed_markdown, str) and (
|
452 |
+
processed_markdown.startswith("Error:") or processed_markdown.startswith("Unsupported file type:")):
|
453 |
+
logger.error(f"OCR failed or returned error/unsupported: {processed_markdown}")
|
454 |
+
return processed_markdown # Return the error message directly
|
455 |
+
if not isinstance(processed_markdown, str) or len(processed_markdown.strip()) == 0:
|
456 |
+
logger.error("OCR processing returned empty or invalid markdown content.")
|
457 |
+
return "Error: OCR returned empty or invalid content."
|
458 |
+
logger.info("Step 1: OCR finished successfully.")
|
459 |
+
|
460 |
+
# --- Step 2: Chunk the markdown ---
|
461 |
+
logger.info("Step 2: Chunking the markdown...")
|
462 |
+
chunks = chunk_markdown(processed_markdown, chunk_size, chunk_overlap, strip_headers)
|
463 |
+
|
464 |
+
if not chunks:
|
465 |
+
logger.error("Chunking resulted in zero chunks. Check OCR output and chunking parameters.")
|
466 |
+
return "Error: Failed to chunk the document (possibly empty after OCR or no headers found)."
|
467 |
+
logger.info(f"Step 2: Chunking finished, produced {len(chunks)} chunks.")
|
468 |
+
|
469 |
+
# --- Step 3: Prepare dataset ---
|
470 |
+
logger.info("Step 3: Preparing data for Hugging Face dataset...")
|
471 |
data: Dict[str, List[Any]] = {
|
472 |
"chunk_id": [],
|
473 |
+
"text": [], # Renamed 'content' to 'text'
|
474 |
"metadata": [],
|
475 |
+
"source_filename": [],
|
476 |
}
|
477 |
+
|
478 |
for i, chunk in enumerate(chunks):
|
479 |
+
chunk_id = f"{source_filename}_chunk_{i}"
|
480 |
+
data["chunk_id"].append(chunk_id)
|
481 |
+
data["text"].append(chunk.page_content if chunk.page_content else "") # Ensure text is string
|
482 |
+
|
483 |
+
# Ensure metadata is serializable (dicts, lists, primitives) for HF Datasets
|
484 |
+
serializable_metadata = {}
|
485 |
+
if hasattr(chunk, 'metadata') and chunk.metadata:
|
486 |
+
for k, v in chunk.metadata.items():
|
487 |
+
if isinstance(v, (str, int, float, bool, list, dict, type(None))):
|
488 |
+
serializable_metadata[k] = v
|
489 |
+
else:
|
490 |
+
# Convert potentially problematic types (like Langchain objects) to string
|
491 |
+
logger.warning(f"Chunk {chunk_id}: Metadata key '{k}' has non-standard type {type(v)}. Converting to string.")
|
492 |
+
try:
|
493 |
+
serializable_metadata[k] = str(v)
|
494 |
+
except Exception as str_err:
|
495 |
+
logger.error(f"Chunk {chunk_id}: Failed to convert metadata key '{k}' to string: {str_err}")
|
496 |
+
serializable_metadata[k] = f"ERROR_CONVERTING_{type(v).__name__}"
|
497 |
+
data["metadata"].append(serializable_metadata)
|
498 |
+
data["source_filename"].append(source_filename)
|
499 |
+
|
500 |
+
|
501 |
+
# --- Step 4: Create and push dataset to Hugging Face ---
|
502 |
+
logger.info(f"Step 4: Creating Hugging Face Dataset object for repo '{repo_name}'...")
|
503 |
+
try:
|
504 |
+
# Explicitly define features for robustness, especially if metadata varies
|
505 |
+
# features = datasets.Features({
|
506 |
+
# "chunk_id": datasets.Value("string"),
|
507 |
+
# "text": datasets.Value("string"),
|
508 |
+
# "metadata": datasets.features.Features({}), # Define known metadata fields if possible, or leave open
|
509 |
+
# "source_filename": datasets.Value("string"),
|
510 |
+
# })
|
511 |
+
# dataset = Dataset.from_dict(data, features=features)
|
512 |
+
dataset = Dataset.from_dict(data) # Simpler approach, infers features
|
513 |
+
logger.info(f"Dataset object created with {len(chunks)} rows.")
|
514 |
+
except Exception as ds_err:
|
515 |
+
logger.error(f"Failed to create Dataset object: {ds_err}", exc_info=True)
|
516 |
+
return f"Error: Failed to create dataset structure. Check logs. ({ds_err})"
|
517 |
+
|
518 |
+
logger.info(f"Connecting to Hugging Face Hub API to push to '{repo_name}'...")
|
519 |
+
try:
|
520 |
+
api = HfApi(token=hf_token) # Pass token explicitly
|
521 |
+
|
522 |
+
# Create repo if it doesn't exist
|
523 |
+
try:
|
524 |
+
api.repo_info(repo_id=repo_name, repo_type="dataset")
|
525 |
+
logger.info(f"Repository '{repo_name}' already exists. Will overwrite content.")
|
526 |
+
except huggingface_hub.utils.RepositoryNotFoundError:
|
527 |
+
logger.info(f"Repository '{repo_name}' does not exist. Creating...")
|
528 |
+
api.create_repo(repo_id=repo_name, repo_type="dataset", private=False) # Default to public
|
529 |
+
logger.info(f"Successfully created repository '{repo_name}'.")
|
530 |
+
|
531 |
+
# Push the dataset
|
532 |
+
logger.info(f"Pushing dataset to '{repo_name}'...")
|
533 |
+
commit_message = f"Add/update OCR data from file: {source_filename}"
|
534 |
+
# push_to_hub overwrites the dataset by default
|
535 |
+
dataset.push_to_hub(repo_name, commit_message=commit_message)
|
536 |
+
repo_url = f"https://huggingface.co/datasets/{repo_name}"
|
537 |
+
logger.info(f"Dataset successfully pushed to {repo_url}")
|
538 |
+
return f"Success! Dataset with {len(chunks)} chunks saved to Hugging Face: {repo_url}"
|
539 |
+
|
540 |
+
except huggingface_hub.utils.HfHubHTTPError as hf_http_err:
|
541 |
+
logger.error(f"Hugging Face Hub HTTP Error: {hf_http_err}", exc_info=True)
|
542 |
+
return f"Error: Hugging Face Hub Error pushing to '{repo_name}'. Status: {hf_http_err.response.status_code}. Check token permissions, repo name, and network. Details: {hf_http_err}"
|
543 |
+
except Exception as push_err:
|
544 |
+
logger.error(f"Failed to push dataset to '{repo_name}': {push_err}", exc_info=True)
|
545 |
+
return f"Error: Failed to push dataset to Hugging Face repository '{repo_name}'. ({push_err})"
|
546 |
+
|
547 |
except Exception as e:
|
548 |
+
# Catch any unexpected errors during the overall process
|
549 |
+
logger.error(f"An unexpected error occurred processing '{source_filename}': {str(e)}", exc_info=True)
|
550 |
+
return f"An unexpected error occurred: {str(e)}"
|
551 |
+
finally:
|
552 |
+
logger.info(f"--- Finished processing for file: {source_filename} ---")
|
553 |
+
|
554 |
+
|
555 |
+
# --- Gradio Interface ---
|
556 |
+
with gr.Blocks(title="Mistral OCR & Dataset Creator", theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan")) as demo:
|
557 |
+
gr.Markdown("# Mistral OCR, Markdown Chunking, and Hugging Face Dataset Creator")
|
558 |
+
gr.Markdown(
|
559 |
+
"""
|
560 |
+
Upload a PDF or image file (PNG, JPG, WEBP, BMP). The application will:
|
561 |
+
1. Extract text and images using **Mistral OCR**.
|
562 |
+
2. Embed images as base64 data URIs directly within the extracted markdown text.
|
563 |
+
3. Chunk the resulting markdown based on **headers** and optionally **recursively by character count**.
|
564 |
+
4. Store any embedded base64 images found **within each chunk** in the chunk's metadata (`metadata['images_base64']`).
|
565 |
+
5. Create or update a **Hugging Face Dataset** with the processed chunks (`chunk_id`, `text`, `metadata`, `source_filename`).
|
566 |
+
"""
|
567 |
+
)
|
568 |
|
|
|
|
|
|
|
|
|
|
|
569 |
with gr.Row():
|
570 |
+
with gr.Column(scale=1):
|
571 |
+
file_input = gr.File(
|
572 |
+
label="Upload PDF or Image File",
|
573 |
+
file_types=['.pdf', '.png', '.jpg', '.jpeg', '.webp', '.bmp'],
|
574 |
+
type="filepath" # Ensures we get a path usable by `open()`
|
575 |
+
)
|
576 |
+
|
577 |
+
gr.Markdown("## Chunking Options")
|
578 |
+
chunk_size = gr.Slider(
|
579 |
+
minimum=0, maximum=8000, value=1000, step=100, # Increased max size
|
580 |
+
label="Max Chunk Size (Characters)",
|
581 |
+
info="Approximate target size. Set to 0 to disable recursive splitting (uses only header splits)."
|
582 |
+
)
|
583 |
+
chunk_overlap = gr.Slider(
|
584 |
+
minimum=0, maximum=1000, value=200, step=50,
|
585 |
+
label="Chunk Overlap (Characters)",
|
586 |
+
info="Number of characters to overlap between consecutive chunks (if recursive splitting is enabled)."
|
587 |
+
)
|
588 |
+
strip_headers = gr.Checkbox(
|
589 |
+
label="Strip Markdown Headers (#) from Chunk Content",
|
590 |
+
value=True,
|
591 |
+
info="If checked, removes '#', '##' etc. from the start of the text in each chunk."
|
592 |
+
)
|
593 |
+
|
594 |
+
gr.Markdown("## Hugging Face Output Options")
|
595 |
+
repo_name = gr.Textbox(
|
596 |
+
label="Target Hugging Face Dataset Repository",
|
597 |
+
placeholder="your-username/your-dataset-name",
|
598 |
+
info="The dataset will be pushed here (e.g., 'my-org/my-ocr-data'). Will be created if it doesn't exist."
|
599 |
+
)
|
600 |
+
hf_token = gr.Textbox(
|
601 |
+
label="Hugging Face Token (write permission)",
|
602 |
+
type="password",
|
603 |
+
placeholder="hf_...",
|
604 |
+
info="Required to create/push the dataset. If blank, will try using token from local `huggingface-cli login`.",
|
605 |
+
# value=os.environ.get("HF_TOKEN", "") # Optionally pre-fill from env var if desired
|
606 |
+
)
|
607 |
+
|
608 |
+
submit_btn = gr.Button("Process File and Save to Hugging Face", variant="primary")
|
609 |
+
|
610 |
+
with gr.Column(scale=1):
|
611 |
+
output = gr.Textbox(
|
612 |
+
label="Processing Log / Result Status",
|
613 |
+
lines=20,
|
614 |
+
interactive=False,
|
615 |
+
placeholder="Processing steps and final result will appear here..."
|
616 |
+
)
|
617 |
|
618 |
submit_btn.click(
|
619 |
fn=process_file_and_save,
|
|
|
621 |
outputs=output
|
622 |
)
|
623 |
|
624 |
+
gr.Examples(
|
625 |
+
examples=[
|
626 |
+
[None, 1000, 200, True, "", "hf-username/my-first-ocr-dataset"],
|
627 |
+
[None, 2000, 400, True, "", "hf-username/large-chunk-ocr-data"],
|
628 |
+
[None, 0, 0, False, "", "hf-username/header-only-ocr-data"], # Example for header-only splitting
|
629 |
+
],
|
630 |
+
inputs=[file_input, chunk_size, chunk_overlap, strip_headers, hf_token, repo_name],
|
631 |
+
outputs=output,
|
632 |
+
fn=process_file_and_save, # Make examples clickable
|
633 |
+
cache_examples=False # Avoid caching as it involves API calls and file processing
|
634 |
+
)
|
635 |
+
|
636 |
+
gr.Markdown("--- \n *Requires `MISTRAL_API_KEY` environment variable or being logged in via `huggingface-cli login`.*")
|
637 |
+
|
638 |
+
# --- Launch the Gradio App ---
|
639 |
+
if __name__ == "__main__":
|
640 |
+
# Check if client initialization failed earlier
|
641 |
+
if not client and api_key: # Check if key was present but init failed
|
642 |
+
print("\nCRITICAL: Mistral client failed to initialize. The application cannot perform OCR.")
|
643 |
+
print("Please check your MISTRAL_API_KEY and network connection.\n")
|
644 |
+
# Optionally exit, or let Gradio launch with limited functionality
|
645 |
+
# exit(1)
|
646 |
+
elif not client and not api_key:
|
647 |
+
print("\nWARNING: Mistral client not initialized because no API key was found.")
|
648 |
+
print("OCR functionality will fail. Please set MISTRAL_API_KEY or log in via `huggingface-cli login`.\n")
|
649 |
+
|
650 |
+
# share=True creates a public link (useful for Colab/Spaces)
|
651 |
+
# debug=True provides detailed errors in the console during development
|
652 |
+
demo.launch(share=os.getenv('GRADIO_SHARE', 'False').lower() == 'true', debug=True,)
|