import gradio as gr from langchain_text_splitters import MarkdownHeaderTextSplitter, RecursiveCharacterTextSplitter from langchain.schema import Document from typing import List, Dict, Any, Tuple import logging import re import base64 import mimetypes from datasets import Dataset from huggingface_hub import HfApi, get_token import huggingface_hub import os from mistralai import Mistral # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # --- Mistral OCR Setup --- api_key = os.environ.get("MISTRAL_API_KEY") hf_token_global = None client = None if not api_key: logger.warning("MISTRAL_API_KEY not set. Attempting to use Hugging Face token.") api_key = get_token() if api_key: logger.info("Using Hugging Face token as MISTRAL_API_KEY.") else: logger.warning("No API key found.") if api_key: try: client = Mistral(api_key=api_key) logger.info("Mistral client initialized successfully.") except Exception as e: logger.error(f"Failed to initialize Mistral client: {e}", exc_info=True) raise RuntimeError(f"Failed to initialize Mistral client: {e}") else: logger.error("Mistral API key not available. OCR will fail.") # --- Helper Functions --- def encode_image_bytes(image_bytes: bytes) -> str: """Encodes image bytes to a base64 string.""" return base64.b64encode(image_bytes).decode('utf-8') def extract_images_from_markdown(markdown_text: str) -> Dict[str, str]: """ Extracts base64 image data URIs from markdown and maps them to reference IDs. Returns a dictionary mapping reference IDs to base64 data URIs. """ image_map = {} img_refs = re.findall(r"!\[.*?\]\((data:image/[a-zA-Z+]+;base64,[A-Za-z0-9+/=]+)\)", markdown_text) for idx, img_uri in enumerate(img_refs): ref_id = f"img_ref_{idx+1}" image_map[ref_id] = img_uri return image_map def replace_image_references(markdown_text: str, image_map: Dict[str, str]) -> str: """ Replaces base64 image data URIs in markdown with reference IDs (e.g., img_ref_1). """ updated_markdown = markdown_text for ref_id, img_uri in image_map.items(): escaped_uri = re.escape(img_uri) pattern = r"(!\[.*?\]\()" + escaped_uri + r"(\))" updated_markdown = re.sub(pattern, f"\\1{ref_id}\\2", updated_markdown) return updated_markdown def get_combined_markdown(ocr_response: Any) -> Tuple[str, str, Dict[str, str]]: """Combines markdown from OCR pages, replacing image IDs with base64 data URIs.""" processed_markdowns = [] raw_markdowns = [] image_data_map = {} if not hasattr(ocr_response, 'pages') or not ocr_response.pages: logger.warning("OCR response has no 'pages' attribute or pages list is empty.") return "", "", {} try: for page_idx, page in enumerate(ocr_response.pages): if hasattr(page, 'images') and page.images: logger.info(f"Page {page_idx}: Found {len(page.images)} images.") for img in page.images: if hasattr(img, 'id') and hasattr(img, 'image_base64') and img.image_base64: image_data_map[img.id] = img.image_base64 logger.debug(f"Page {page_idx}: Image ID {img.id} added to image_data_map.") else: logger.warning(f"Page {page_idx}: Image object lacks 'id' or valid 'image_base64'. Image: {img}") else: logger.info(f"Page {page_idx}: No images found.") if not hasattr(page, 'markdown'): logger.warning(f"Page {page_idx} lacks 'markdown' attribute. Skipping.") continue current_raw_markdown = page.markdown if page.markdown else "" raw_markdowns.append(current_raw_markdown) current_processed_markdown = current_raw_markdown img_refs = re.findall(r"!\[.*?\]\((.*?)\)", current_processed_markdown) logger.debug(f"Page {page_idx}: Found {len(img_refs)} image references in markdown.") for img_id in img_refs: if img_id in image_data_map: base64_data_uri = image_data_map[img_id] escaped_img_id = re.escape(img_id) pattern = r"(!\[.*?\]\()" + escaped_img_id + r"(\))" if re.search(pattern, current_processed_markdown): current_processed_markdown = re.sub( pattern, r"\1" + base64_data_uri + r"\2", current_processed_markdown ) logger.debug(f"Page {page_idx}: Replaced image ID {img_id} with base64 data URI.") elif not img_id.startswith(('http:', 'https:', 'data:')): logger.warning(f"Page {page_idx}: Image ID '{img_id}' not in image data.") processed_markdowns.append(current_processed_markdown) logger.info(f"Processed {len(processed_markdowns)} pages with {len(image_data_map)} images.") return "\n\n".join(processed_markdowns), "\n\n".join(raw_markdowns), image_data_map except Exception as e: logger.error(f"Error processing OCR response markdown: {e}", exc_info=True) raise def perform_ocr_file(file_obj: Any) -> Tuple[str, str, Dict[str, str]]: """Performs OCR on an uploaded file using Mistral API.""" if not client: return "Error: Mistral client not initialized.", "", {} if not file_obj: return "Error: No file provided.", "", {} try: file_path = file_obj.name file_name = getattr(file_obj, 'orig_name', os.path.basename(file_path)) logger.info(f"Performing OCR on file: {file_name}") file_ext = os.path.splitext(file_name)[1].lower() ocr_response = None uploaded_file_id = None if file_ext == '.pdf': try: with open(file_path, "rb") as f: file_content = f.read() logger.info(f"Uploading PDF {file_name} to Mistral...") uploaded_pdf = client.files.upload( file={ "file_name": file_name, "content": file_content, }, purpose="ocr" ) uploaded_file_id = uploaded_pdf.id logger.info(f"PDF uploaded successfully. File ID: {uploaded_file_id}") signed_url_response = client.files.get_signed_url(file_id=uploaded_file_id) ocr_response = client.ocr.process( model="mistral-ocr-latest", document={"type": "document_url", "document_url": signed_url_response.url}, include_image_base64=True ) logger.info(f"OCR response received: {ocr_response}") finally: if uploaded_file_id: try: client.files.delete(file_id=uploaded_file_id) except Exception as delete_err: logger.warning(f"Failed to delete temporary file {uploaded_file_id}: {delete_err}") elif file_ext in ['.png', '.jpg', '.jpeg', '.webp', '.bmp']: with open(file_path, "rb") as f: image_bytes = f.read() if not image_bytes: return f"Error: Uploaded image file '{file_name}' is empty.", "", {} base64_encoded_image = encode_image_bytes(image_bytes) mime_type, _ = mimetypes.guess_type(file_path) mime_type = mime_type or 'image/jpeg' data_uri = f"data:{mime_type};base64,{base64_encoded_image}" ocr_response = client.ocr.process( model="mistral-ocr-latest", document={"type": "image_url", "image_url": data_uri}, include_image_base64=True ) logger.info(f"OCR response received: {ocr_response}") else: return f"Unsupported file type: '{file_name}'.", "", {} if ocr_response: processed_md, raw_md, img_map = get_combined_markdown(ocr_response) logger.info(f"Processed markdown length: {len(processed_md)}") return processed_md, raw_md, img_map return f"Error: OCR failed for '{file_name}'.", "", {} except Exception as e: logger.error(f"Error during OCR: {e}", exc_info=True) return f"Error during OCR: {str(e)}", "", {} def chunk_markdown( markdown_text_with_images: str, chunk_size: int = 1000, chunk_overlap: int = 200, strip_headers: bool = True ) -> List[Document]: """Chunks markdown text, preserving headers in metadata and extracting images.""" if not markdown_text_with_images or not markdown_text_with_images.strip(): logger.warning("chunk_markdown received empty input.") return [] # Extract images and replace with reference IDs image_map = extract_images_from_markdown(markdown_text_with_images) updated_markdown = replace_image_references(markdown_text_with_images, image_map) logger.info(f"Extracted {len(image_map)} images from markdown.") headers_to_split_on = [ ("#", "Header 1"), ("##", "Header 2"), ("###", "Header 3"), ("####", "Header 4"), ("#####", "Header 5"), ("######", "Header 6"), ] markdown_splitter = MarkdownHeaderTextSplitter( headers_to_split_on=headers_to_split_on, strip_headers=strip_headers ) header_chunks = markdown_splitter.split_text(updated_markdown) if not header_chunks: logger.warning("No header chunks created. Treating entire text as one chunk.") return [Document(page_content=updated_markdown, metadata={"images_base64": list(image_map.values())})] final_chunks = [] if chunk_size > 0: text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap, length_function=len, separators=["\n\n", "\n", "(?<=\. )", "(?<=\? )", "(?<=! )", ", ", "; ", " ", ""], add_start_index=True ) for i, header_chunk in enumerate(header_chunks): if header_chunk.page_content: sub_chunks = text_splitter.split_documents([header_chunk]) final_chunks.extend(sub_chunks) logger.debug(f"Header chunk {i}: Split into {len(sub_chunks)} sub-chunks.") else: logger.debug(f"Header chunk {i}: Empty, skipping.") else: final_chunks = [chunk for chunk in header_chunks if chunk.page_content] # Add image references to metadata for each chunk for chunk in final_chunks: if not hasattr(chunk, 'metadata'): chunk.metadata = {} # Find image references in this chunk chunk_img_refs = re.findall(r"!\[.*?\]\((img_ref_\d+)\)", chunk.page_content) chunk_images = [image_map[ref_id] for ref_id in chunk_img_refs if ref_id in image_map] chunk.metadata["images_base64"] = chunk_images chunk.metadata["image_references"] = chunk_img_refs logger.debug(f"Chunk {chunk.metadata.get('start_index', 'unknown')}: Found {len(chunk_images)} images.") logger.info(f"Created {len(final_chunks)} final chunks.") return final_chunks def get_hf_token(explicit_token: str = None) -> str: """Retrieve Hugging Face token with fallback mechanisms.""" global hf_token_global if explicit_token and explicit_token.strip() and explicit_token.startswith('hf_'): return explicit_token.strip() if hf_token_global: return hf_token_global env_token = os.environ.get("HF_TOKEN") if env_token and env_token.startswith('hf_'): hf_token_global = env_token return env_token try: stored_token = huggingface_hub.get_token() if stored_token: hf_token_global = stored_token return stored_token except Exception as e: logger.warning(f"Could not retrieve token from Hugging Face config: {e}") return None def process_file_and_save( file_obj: Any, chunk_size: int, chunk_overlap: int, strip_headers: bool, hf_token: str, repo_name: str ) -> str: """Orchestrates OCR, chunking, and saving to Hugging Face.""" if not file_obj: return "Error: No file uploaded." if not repo_name or '/' not in repo_name: return "Error: Invalid repository name (use 'username/dataset-name')." if chunk_size < 0: chunk_size = 0 if chunk_overlap < 0: chunk_overlap = 0 if chunk_size > 0 and chunk_overlap >= chunk_size: chunk_overlap = min(200, chunk_size // 2) effective_hf_token = get_hf_token(hf_token) if not effective_hf_token: return """Error: No valid Hugging Face token found. Please either: 1. Provide a token in the input field (starts with 'hf_') 2. Set HF_TOKEN environment variable 3. Run `huggingface-cli login` in your terminal""" try: source_filename = getattr(file_obj, 'orig_name', os.path.basename(file_obj.name)) logger.info(f"--- Starting processing for file: {source_filename} ---") processed_markdown, raw_markdown, img_map = perform_ocr_file(file_obj) if not processed_markdown or processed_markdown.startswith("Error:"): return processed_markdown chunks = chunk_markdown(processed_markdown, chunk_size, chunk_overlap, strip_headers) if not chunks: return "Error: Failed to chunk the document." data = { "chunk_id": [f"{source_filename}_chunk_{i}" for i in range(len(chunks))], "text": [chunk.page_content or "" for chunk in chunks], "metadata": [chunk.metadata for chunk in chunks], "source_filename": [source_filename] * len(chunks), } dataset = Dataset.from_dict(data) api = HfApi(token=effective_hf_token) try: user_info = api.whoami() logger.info(f"Authenticated as: {user_info['name']}") except Exception as auth_err: return f"Error: Invalid HF token - authentication failed: {auth_err}" try: api.repo_info(repo_id=repo_name, repo_type="dataset") logger.info(f"Repository '{repo_name}' exists.") except huggingface_hub.utils.RepositoryNotFoundError: api.create_repo(repo_id=repo_name, repo_type="dataset", private=False) logger.info(f"Created repository '{repo_name}'.") dataset.push_to_hub(repo_name, token=effective_hf_token, commit_message=f"Add OCR data from {source_filename}") repo_url = f"https://huggingface.co/datasets/{repo_name}" return f"Success! Dataset with {len(chunks)} chunks saved to: {repo_url}" except huggingface_hub.utils.HfHubHTTPError as hf_http_err: status = getattr(hf_http_err.response, 'status_code', 'Unknown') if status == 401: return "Error: Invalid or unauthorized Hugging Face token." elif status == 403: return "Error: Token lacks write permission." return f"Error: Hugging Face Hub Error (Status {status}): {hf_http_err}" except Exception as e: logger.error(f"Unexpected error: {e}", exc_info=True) return f"Unexpected error: {str(e)}" # --- Gradio Interface --- with gr.Blocks(title="Mistral OCR & Dataset Creator", theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan")) as demo: gr.Markdown("# Mistral OCR, Markdown Chunking, and Hugging Face Dataset Creator") gr.Markdown( """ Upload a PDF or image file. The application will: 1. Extract text and images using Mistral OCR 2. Embed images as base64 data URIs in markdown 3. Chunk markdown by headers and optionally character count 4. Store embedded images in chunk metadata 5. Create/update a Hugging Face Dataset """ ) with gr.Row(): with gr.Column(scale=1): file_input = gr.File( label="Upload PDF or Image File", file_types=['.pdf', '.png', '.jpg', '.jpeg', '.webp', '.bmp'], type="filepath" ) gr.Markdown("## Chunking Options") chunk_size = gr.Slider(minimum=0, maximum=8000, value=1000, step=100, label="Max Chunk Size (Characters)") chunk_overlap = gr.Slider(minimum=0, maximum=1000, value=200, step=50, label="Chunk Overlap (Characters)") strip_headers = gr.Checkbox(label="Strip Headers from Content", value=True) gr.Markdown("## Hugging Face Output Options") repo_name = gr.Textbox(label="HF Dataset Repository", placeholder="your-username/your-dataset-name") hf_token = gr.Textbox(label="Hugging Face Token", type="password", placeholder="hf_...") submit_btn = gr.Button("Process and Save", variant="primary") with gr.Column(scale=1): output = gr.Textbox(label="Result Status", lines=20, interactive=False) submit_btn.click( fn=process_file_and_save, inputs=[file_input, chunk_size, chunk_overlap, strip_headers, hf_token, repo_name], outputs=output ) gr.Examples( examples=[ [None, 1000, 200, True, "", "hf-username/my-first-ocr-dataset"], [None, 2000, 400, True, "", "hf-username/large-chunk-ocr-data"], [None, 0, 0, False, "", "hf-username/header-only-ocr-data"], ], inputs=[file_input, chunk_size, chunk_overlap, strip_headers, hf_token, repo_name], outputs=output, fn=process_file_and_save, cache_examples=False ) gr.Markdown("*Requires MISTRAL_API_KEY or HF token*") if __name__ == "__main__": initial_token = get_hf_token() if not initial_token and not client: print("\nWARNING: Neither Mistral API key nor HF token found.") print("Set MISTRAL_API_KEY and/or HF_TOKEN, or use `huggingface-cli login`") demo.launch( share=os.getenv('GRADIO_SHARE', 'False').lower() == 'true', debug=True, auth_message="Provide a valid Hugging Face token if prompted" )