Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
# Load model and tokenizer | |
model_name = "alexneakameni/language_detection" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Get label mapping | |
id2label = model.config.id2label | |
def predict_language(text, top_k=5): | |
"""Predicts the top-k languages for the given text.""" | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device) | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
probs = torch.nn.functional.softmax(logits, dim=-1).squeeze() | |
top_probs, top_indices = torch.topk(probs, top_k) | |
results = [f"{id2label[idx.item()]}: {prob:.4f}" for prob, idx in zip(top_probs, top_indices)] | |
return "\n".join(results) | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=predict_language, | |
inputs=[ | |
gr.Textbox(label="Enter text", placeholder="Type a sentence here..."), | |
gr.Slider(1, 10, value=5, step=1, label="Top-k Languages") | |
], | |
outputs=gr.Textbox(label="Predicted Languages"), | |
title="🌍 Language Detection", | |
description="Detects the language of a given text using a fine-tuned BERT model. Returns the top-k most probable languages.", | |
examples=[ | |
["Hello, how are you?", 5], | |
["Bonjour, comment ça va?", 5], | |
["Hola, ¿cómo estás?", 5], | |
["Hallo, wie geht es dir?", 5], | |
["Привет, как дела?", 5] | |
] | |
) | |
demo.launch() | |