File size: 44,965 Bytes
f1f9265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

import datetime
import getpass
import hashlib
import json
import os
import os.path as osp
import random
import time
import types
import warnings
from dataclasses import asdict
from pathlib import Path

import numpy as np
import pyrallis
import torch
from accelerate import Accelerator, InitProcessGroupKwargs
from accelerate.utils import DistributedType
from PIL import Image
from termcolor import colored

warnings.filterwarnings("ignore")  # ignore warning


from diffusion import DPMS, FlowEuler, Scheduler
from diffusion.data.builder import build_dataloader, build_dataset
from diffusion.data.wids import DistributedRangedSampler
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode, vae_encode
from diffusion.model.respace import compute_density_for_timestep_sampling
from diffusion.utils.checkpoint import load_checkpoint, save_checkpoint
from diffusion.utils.config import SanaConfig
from diffusion.utils.data_sampler import AspectRatioBatchSampler
from diffusion.utils.dist_utils import clip_grad_norm_, flush, get_world_size
from diffusion.utils.logger import LogBuffer, get_root_logger
from diffusion.utils.lr_scheduler import build_lr_scheduler
from diffusion.utils.misc import DebugUnderflowOverflow, init_random_seed, read_config, set_random_seed
from diffusion.utils.optimizer import auto_scale_lr, build_optimizer

os.environ["TOKENIZERS_PARALLELISM"] = "false"


def set_fsdp_env():
    os.environ["ACCELERATE_USE_FSDP"] = "true"
    os.environ["FSDP_AUTO_WRAP_POLICY"] = "TRANSFORMER_BASED_WRAP"
    os.environ["FSDP_BACKWARD_PREFETCH"] = "BACKWARD_PRE"
    os.environ["FSDP_TRANSFORMER_CLS_TO_WRAP"] = "SanaBlock"


@torch.inference_mode()
def log_validation(accelerator, config, model, logger, step, device, vae=None, init_noise=None):
    torch.cuda.empty_cache()
    vis_sampler = config.scheduler.vis_sampler
    model = accelerator.unwrap_model(model).eval()
    hw = torch.tensor([[image_size, image_size]], dtype=torch.float, device=device).repeat(1, 1)
    ar = torch.tensor([[1.0]], device=device).repeat(1, 1)
    null_y = torch.load(null_embed_path, map_location="cpu")
    null_y = null_y["uncond_prompt_embeds"].to(device)

    # Create sampling noise:
    logger.info("Running validation... ")
    image_logs = []

    def run_sampling(init_z=None, label_suffix="", vae=None, sampler="dpm-solver"):
        latents = []
        current_image_logs = []
        for prompt in validation_prompts:
            z = (
                torch.randn(1, config.vae.vae_latent_dim, latent_size, latent_size, device=device)
                if init_z is None
                else init_z
            )
            embed = torch.load(
                osp.join(config.train.valid_prompt_embed_root, f"{prompt[:50]}_{valid_prompt_embed_suffix}"),
                map_location="cpu",
            )
            caption_embs, emb_masks = embed["caption_embeds"].to(device), embed["emb_mask"].to(device)
            # caption_embs = caption_embs[:, None]
            # emb_masks = emb_masks[:, None]
            model_kwargs = dict(data_info={"img_hw": hw, "aspect_ratio": ar}, mask=emb_masks)

            if sampler == "dpm-solver":
                dpm_solver = DPMS(
                    model.forward_with_dpmsolver,
                    condition=caption_embs,
                    uncondition=null_y,
                    cfg_scale=4.5,
                    model_kwargs=model_kwargs,
                )
                denoised = dpm_solver.sample(
                    z,
                    steps=14,
                    order=2,
                    skip_type="time_uniform",
                    method="multistep",
                )
            elif sampler == "flow_euler":
                flow_solver = FlowEuler(
                    model, condition=caption_embs, uncondition=null_y, cfg_scale=4.5, model_kwargs=model_kwargs
                )
                denoised = flow_solver.sample(z, steps=28)
            elif sampler == "flow_dpm-solver":
                dpm_solver = DPMS(
                    model.forward_with_dpmsolver,
                    condition=caption_embs,
                    uncondition=null_y,
                    cfg_scale=4.5,
                    model_type="flow",
                    model_kwargs=model_kwargs,
                    schedule="FLOW",
                )
                denoised = dpm_solver.sample(
                    z,
                    steps=20,
                    order=2,
                    skip_type="time_uniform_flow",
                    method="multistep",
                    flow_shift=config.scheduler.flow_shift,
                )
            else:
                raise ValueError(f"{sampler} not implemented")

            latents.append(denoised)
        torch.cuda.empty_cache()
        if vae is None:
            vae = get_vae(config.vae.vae_type, config.vae.vae_pretrained, accelerator.device).to(torch.float16)
        for prompt, latent in zip(validation_prompts, latents):
            latent = latent.to(torch.float16)
            samples = vae_decode(config.vae.vae_type, vae, latent)
            samples = (
                torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()[0]
            )
            image = Image.fromarray(samples)
            current_image_logs.append({"validation_prompt": prompt + label_suffix, "images": [image]})

        return current_image_logs

    # First run with original noise
    image_logs += run_sampling(init_z=None, label_suffix="", vae=vae, sampler=vis_sampler)

    # Second run with init_noise if provided
    if init_noise is not None:
        init_noise = torch.clone(init_noise).to(device)
        image_logs += run_sampling(init_z=init_noise, label_suffix=" w/ init noise", vae=vae, sampler=vis_sampler)

    formatted_images = []
    for log in image_logs:
        images = log["images"]
        validation_prompt = log["validation_prompt"]
        for image in images:
            formatted_images.append((validation_prompt, np.asarray(image)))

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            for validation_prompt, image in formatted_images:
                tracker.writer.add_images(validation_prompt, image[None, ...], step, dataformats="NHWC")
        elif tracker.name == "wandb":
            import wandb

            wandb_images = []
            for validation_prompt, image in formatted_images:
                wandb_images.append(wandb.Image(image, caption=validation_prompt, file_type="jpg"))
            tracker.log({"validation": wandb_images})
        else:
            logger.warn(f"image logging not implemented for {tracker.name}")

    def concatenate_images(image_caption, images_per_row=5, image_format="webp"):
        import io

        images = [log["images"][0] for log in image_caption]
        if images[0].size[0] > 1024:
            images = [image.resize((1024, 1024)) for image in images]

        widths, heights = zip(*(img.size for img in images))
        max_width = max(widths)
        total_height = sum(heights[i : i + images_per_row][0] for i in range(0, len(images), images_per_row))

        new_im = Image.new("RGB", (max_width * images_per_row, total_height))

        y_offset = 0
        for i in range(0, len(images), images_per_row):
            row_images = images[i : i + images_per_row]
            x_offset = 0
            for img in row_images:
                new_im.paste(img, (x_offset, y_offset))
                x_offset += max_width
            y_offset += heights[i]
        webp_image_bytes = io.BytesIO()
        new_im.save(webp_image_bytes, format=image_format)
        webp_image_bytes.seek(0)
        new_im = Image.open(webp_image_bytes)

        return new_im

    if config.train.local_save_vis:
        file_format = "webp"
        local_vis_save_path = osp.join(config.work_dir, "log_vis")
        os.umask(0o000)
        os.makedirs(local_vis_save_path, exist_ok=True)
        concatenated_image = concatenate_images(image_logs, images_per_row=5, image_format=file_format)
        save_path = (
            osp.join(local_vis_save_path, f"vis_{step}.{file_format}")
            if init_noise is None
            else osp.join(local_vis_save_path, f"vis_{step}_w_init.{file_format}")
        )
        concatenated_image.save(save_path)

    del vae
    flush()
    return image_logs


def train(config, args, accelerator, model, optimizer, lr_scheduler, train_dataloader, train_diffusion, logger):
    if getattr(config.train, "debug_nan", False):
        DebugUnderflowOverflow(model)
        logger.info("NaN debugger registered. Start to detect overflow during training.")
    log_buffer = LogBuffer()

    global_step = start_step + 1
    skip_step = max(config.train.skip_step, global_step) % train_dataloader_len
    skip_step = skip_step if skip_step < (train_dataloader_len - 20) else 0
    loss_nan_timer = 0

    # Cache Dataset for BatchSampler
    if args.caching and config.model.multi_scale:
        caching_start = time.time()
        logger.info(
            f"Start caching your dataset for batch_sampler at {cache_file}. \n"
            f"This may take a lot of time...No training will launch"
        )
        train_dataloader.batch_sampler.sampler.set_start(max(train_dataloader.batch_sampler.exist_ids, 0))
        accelerator.wait_for_everyone()
        for index, _ in enumerate(train_dataloader):
            accelerator.wait_for_everyone()
            if index % 2000 == 0:
                logger.info(
                    f"rank: {rank}, Cached file len: {len(train_dataloader.batch_sampler.cached_idx)} / {len(train_dataloader)}"
                )
                print(
                    f"rank: {rank}, Cached file len: {len(train_dataloader.batch_sampler.cached_idx)} / {len(train_dataloader)}"
                )
            if (time.time() - caching_start) / 3600 > 3.7:
                json.dump(train_dataloader.batch_sampler.cached_idx, open(cache_file, "w"), indent=4)
                accelerator.wait_for_everyone()
                break
            if len(train_dataloader.batch_sampler.cached_idx) == len(train_dataloader) - 1000:
                logger.info(
                    f"Saving rank: {rank}, Cached file len: {len(train_dataloader.batch_sampler.cached_idx)} / {len(train_dataloader)}"
                )
                json.dump(train_dataloader.batch_sampler.cached_idx, open(cache_file, "w"), indent=4)
            accelerator.wait_for_everyone()
            continue
        accelerator.wait_for_everyone()
        print(f"Saving rank-{rank} Cached file len: {len(train_dataloader.batch_sampler.cached_idx)}")
        json.dump(train_dataloader.batch_sampler.cached_idx, open(cache_file, "w"), indent=4)
        return

    # Now you train the model
    for epoch in range(start_epoch + 1, config.train.num_epochs + 1):
        time_start, last_tic = time.time(), time.time()
        sampler = (
            train_dataloader.batch_sampler.sampler
            if (num_replicas > 1 or config.model.multi_scale)
            else train_dataloader.sampler
        )
        sampler.set_epoch(epoch)
        sampler.set_start(max((skip_step - 1) * config.train.train_batch_size, 0))
        if skip_step > 1 and accelerator.is_main_process:
            logger.info(f"Skipped Steps: {skip_step}")
        skip_step = 1
        data_time_start = time.time()
        data_time_all = 0
        lm_time_all = 0
        vae_time_all = 0
        model_time_all = 0
        for step, batch in enumerate(train_dataloader):
            # image, json_info, key = batch
            accelerator.wait_for_everyone()
            data_time_all += time.time() - data_time_start
            vae_time_start = time.time()
            if load_vae_feat:
                z = batch[0].to(accelerator.device)
            else:
                with torch.no_grad():
                    with torch.amp.autocast(
                        "cuda",
                        enabled=(config.model.mixed_precision == "fp16" or config.model.mixed_precision == "bf16"),
                    ):
                        z = vae_encode(
                            config.vae.vae_type, vae, batch[0], config.vae.sample_posterior, accelerator.device
                        )

            accelerator.wait_for_everyone()
            vae_time_all += time.time() - vae_time_start

            clean_images = z
            data_info = batch[3]

            lm_time_start = time.time()
            if load_text_feat:
                y = batch[1]  # bs, 1, N, C
                y_mask = batch[2]  # bs, 1, 1, N
            else:
                if "T5" in config.text_encoder.text_encoder_name:
                    with torch.no_grad():
                        txt_tokens = tokenizer(
                            batch[1], max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
                        ).to(accelerator.device)
                        y = text_encoder(txt_tokens.input_ids, attention_mask=txt_tokens.attention_mask)[0][:, None]
                        y_mask = txt_tokens.attention_mask[:, None, None]
                elif (
                    "gemma" in config.text_encoder.text_encoder_name or "Qwen" in config.text_encoder.text_encoder_name
                ):
                    with torch.no_grad():
                        if not config.text_encoder.chi_prompt:
                            max_length_all = config.text_encoder.model_max_length
                            prompt = batch[1]
                        else:
                            chi_prompt = "\n".join(config.text_encoder.chi_prompt)
                            prompt = [chi_prompt + i for i in batch[1]]
                            num_chi_prompt_tokens = len(tokenizer.encode(chi_prompt))
                            max_length_all = (
                                num_chi_prompt_tokens + config.text_encoder.model_max_length - 2
                            )  # magic number 2: [bos], [_]
                        txt_tokens = tokenizer(
                            prompt,
                            padding="max_length",
                            max_length=max_length_all,
                            truncation=True,
                            return_tensors="pt",
                        ).to(accelerator.device)
                        select_index = [0] + list(
                            range(-config.text_encoder.model_max_length + 1, 0)
                        )  # first bos and end N-1
                        y = text_encoder(txt_tokens.input_ids, attention_mask=txt_tokens.attention_mask)[0][:, None][
                            :, :, select_index
                        ]
                        y_mask = txt_tokens.attention_mask[:, None, None][:, :, :, select_index]
                else:
                    print("error")
                    exit()

            # Sample a random timestep for each image
            bs = clean_images.shape[0]
            timesteps = torch.randint(
                0, config.scheduler.train_sampling_steps, (bs,), device=clean_images.device
            ).long()
            if config.scheduler.weighting_scheme in ["logit_normal"]:
                # adapting from diffusers.training_utils
                u = compute_density_for_timestep_sampling(
                    weighting_scheme=config.scheduler.weighting_scheme,
                    batch_size=bs,
                    logit_mean=config.scheduler.logit_mean,
                    logit_std=config.scheduler.logit_std,
                    mode_scale=None,  # not used
                )
                timesteps = (u * config.scheduler.train_sampling_steps).long().to(clean_images.device)
            grad_norm = None
            accelerator.wait_for_everyone()
            lm_time_all += time.time() - lm_time_start
            model_time_start = time.time()
            with accelerator.accumulate(model):
                # Predict the noise residual
                optimizer.zero_grad()
                loss_term = train_diffusion.training_losses(
                    model, clean_images, timesteps, model_kwargs=dict(y=y, mask=y_mask, data_info=data_info)
                )
                loss = loss_term["loss"].mean()
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    grad_norm = accelerator.clip_grad_norm_(model.parameters(), config.train.gradient_clip)
                optimizer.step()
                lr_scheduler.step()
                accelerator.wait_for_everyone()
                model_time_all += time.time() - model_time_start

            if torch.any(torch.isnan(loss)):
                loss_nan_timer += 1
            lr = lr_scheduler.get_last_lr()[0]
            logs = {args.loss_report_name: accelerator.gather(loss).mean().item()}
            if grad_norm is not None:
                logs.update(grad_norm=accelerator.gather(grad_norm).mean().item())
            log_buffer.update(logs)
            if (step + 1) % config.train.log_interval == 0 or (step + 1) == 1:
                accelerator.wait_for_everyone()
                t = (time.time() - last_tic) / config.train.log_interval
                t_d = data_time_all / config.train.log_interval
                t_m = model_time_all / config.train.log_interval
                t_lm = lm_time_all / config.train.log_interval
                t_vae = vae_time_all / config.train.log_interval
                avg_time = (time.time() - time_start) / (step + 1)
                eta = str(datetime.timedelta(seconds=int(avg_time * (total_steps - global_step - 1))))
                eta_epoch = str(
                    datetime.timedelta(
                        seconds=int(
                            avg_time
                            * (train_dataloader_len - sampler.step_start // config.train.train_batch_size - step - 1)
                        )
                    )
                )
                log_buffer.average()

                current_step = (
                    global_step - sampler.step_start // config.train.train_batch_size
                ) % train_dataloader_len
                current_step = train_dataloader_len if current_step == 0 else current_step
                info = (
                    f"Epoch: {epoch} | Global Step: {global_step} | Local Step: {current_step} // {train_dataloader_len}, "
                    f"total_eta: {eta}, epoch_eta:{eta_epoch}, time: all:{t:.3f}, model:{t_m:.3f}, data:{t_d:.3f}, "
                    f"lm:{t_lm:.3f}, vae:{t_vae:.3f}, lr:{lr:.3e}, Cap: {batch[5][0]}, "
                )
                info += (
                    f"s:({model.module.h}, {model.module.w}), "
                    if hasattr(model, "module")
                    else f"s:({model.h}, {model.w}), "
                )

                info += ", ".join([f"{k}:{v:.4f}" for k, v in log_buffer.output.items()])
                last_tic = time.time()
                log_buffer.clear()
                data_time_all = 0
                model_time_all = 0
                lm_time_all = 0
                vae_time_all = 0
                if accelerator.is_main_process:
                    logger.info(info)

            logs.update(lr=lr)
            if accelerator.is_main_process:
                accelerator.log(logs, step=global_step)

            global_step += 1

            if loss_nan_timer > 20:
                raise ValueError("Loss is NaN too much times. Break here.")
            if (
                global_step % config.train.save_model_steps == 0
                or (time.time() - training_start_time) / 3600 > config.train.training_hours
            ):
                accelerator.wait_for_everyone()
                if accelerator.is_main_process:
                    os.umask(0o000)
                    ckpt_saved_path = save_checkpoint(
                        osp.join(config.work_dir, "checkpoints"),
                        epoch=epoch,
                        step=global_step,
                        model=accelerator.unwrap_model(model),
                        optimizer=optimizer,
                        lr_scheduler=lr_scheduler,
                        generator=generator,
                        add_symlink=True,
                    )
                    if config.train.online_metric and global_step % config.train.eval_metric_step == 0 and step > 1:
                        online_metric_monitor_dir = osp.join(config.work_dir, config.train.online_metric_dir)
                        os.makedirs(online_metric_monitor_dir, exist_ok=True)
                        with open(f"{online_metric_monitor_dir}/{ckpt_saved_path.split('/')[-1]}.txt", "w") as f:
                            f.write(osp.join(config.work_dir, "config.py") + "\n")
                            f.write(ckpt_saved_path)

                if (time.time() - training_start_time) / 3600 > config.train.training_hours:
                    logger.info(f"Stopping training at epoch {epoch}, step {global_step} due to time limit.")
                    return
            if config.train.visualize and (global_step % config.train.eval_sampling_steps == 0 or (step + 1) == 1):
                accelerator.wait_for_everyone()
                if accelerator.is_main_process:
                    if validation_noise is not None:
                        log_validation(
                            accelerator=accelerator,
                            config=config,
                            model=model,
                            logger=logger,
                            step=global_step,
                            device=accelerator.device,
                            vae=vae,
                            init_noise=validation_noise,
                        )
                    else:
                        log_validation(
                            accelerator=accelerator,
                            config=config,
                            model=model,
                            logger=logger,
                            step=global_step,
                            device=accelerator.device,
                            vae=vae,
                        )

            # avoid dead-lock of multiscale data batch sampler
            # for internal, refactor dataloader logic to remove the ad-hoc implementation
            if (
                config.model.multi_scale
                and (train_dataloader_len - sampler.step_start // config.train.train_batch_size - step) < 30
            ):
                global_step = epoch * train_dataloader_len
                logger.info("Early stop current iteration")
                break

            data_time_start = time.time()

        if epoch % config.train.save_model_epochs == 0 or epoch == config.train.num_epochs and not config.debug:
            accelerator.wait_for_everyone()
            if accelerator.is_main_process:
                # os.umask(0o000)
                ckpt_saved_path = save_checkpoint(
                    osp.join(config.work_dir, "checkpoints"),
                    epoch=epoch,
                    step=global_step,
                    model=accelerator.unwrap_model(model),
                    optimizer=optimizer,
                    lr_scheduler=lr_scheduler,
                    generator=generator,
                    add_symlink=True,
                )

                online_metric_monitor_dir = osp.join(config.work_dir, config.train.online_metric_dir)
                os.makedirs(online_metric_monitor_dir, exist_ok=True)
                with open(f"{online_metric_monitor_dir}/{ckpt_saved_path.split('/')[-1]}.txt", "w") as f:
                    f.write(osp.join(config.work_dir, "config.py") + "\n")
                    f.write(ckpt_saved_path)
        accelerator.wait_for_everyone()


@pyrallis.wrap()
def main(cfg: SanaConfig) -> None:
    global train_dataloader_len, start_epoch, start_step, vae, generator, num_replicas, rank, training_start_time
    global load_vae_feat, load_text_feat, validation_noise, text_encoder, tokenizer
    global max_length, validation_prompts, latent_size, valid_prompt_embed_suffix, null_embed_path
    global image_size, cache_file, total_steps

    config = cfg
    args = cfg
    # config = read_config(args.config)

    training_start_time = time.time()
    load_from = True
    if args.resume_from or config.model.resume_from:
        load_from = False
        config.model.resume_from = dict(
            checkpoint=args.resume_from or config.model.resume_from,
            load_ema=False,
            resume_optimizer=True,
            resume_lr_scheduler=True,
        )

    if args.debug:
        config.train.log_interval = 1
        config.train.train_batch_size = min(64, config.train.train_batch_size)
        args.report_to = "tensorboard"

    os.umask(0o000)
    os.makedirs(config.work_dir, exist_ok=True)

    init_handler = InitProcessGroupKwargs()
    init_handler.timeout = datetime.timedelta(seconds=5400)  # change timeout to avoid a strange NCCL bug
    # Initialize accelerator and tensorboard logging
    if config.train.use_fsdp:
        init_train = "FSDP"
        from accelerate import FullyShardedDataParallelPlugin
        from torch.distributed.fsdp.fully_sharded_data_parallel import FullStateDictConfig

        set_fsdp_env()
        fsdp_plugin = FullyShardedDataParallelPlugin(
            state_dict_config=FullStateDictConfig(offload_to_cpu=False, rank0_only=False),
        )
    else:
        init_train = "DDP"
        fsdp_plugin = None

    accelerator = Accelerator(
        mixed_precision=config.model.mixed_precision,
        gradient_accumulation_steps=config.train.gradient_accumulation_steps,
        log_with=args.report_to,
        project_dir=osp.join(config.work_dir, "logs"),
        fsdp_plugin=fsdp_plugin,
        kwargs_handlers=[init_handler],
    )

    log_name = "train_log.log"
    logger = get_root_logger(osp.join(config.work_dir, log_name))
    logger.info(accelerator.state)

    config.train.seed = init_random_seed(getattr(config.train, "seed", None))
    set_random_seed(config.train.seed + int(os.environ["LOCAL_RANK"]))
    generator = torch.Generator(device="cpu").manual_seed(config.train.seed)

    if accelerator.is_main_process:
        pyrallis.dump(config, open(osp.join(config.work_dir, "config.yaml"), "w"), sort_keys=False, indent=4)
        if args.report_to == "wandb":
            import wandb

            wandb.init(project=args.tracker_project_name, name=args.name, resume="allow", id=args.name)

    logger.info(f"Config: \n{config}")
    logger.info(f"World_size: {get_world_size()}, seed: {config.train.seed}")
    logger.info(f"Initializing: {init_train} for training")
    image_size = config.model.image_size
    latent_size = int(image_size) // config.vae.vae_downsample_rate
    pred_sigma = getattr(config.scheduler, "pred_sigma", True)
    learn_sigma = getattr(config.scheduler, "learn_sigma", True) and pred_sigma
    max_length = config.text_encoder.model_max_length
    vae = None
    validation_noise = (
        torch.randn(1, config.vae.vae_latent_dim, latent_size, latent_size, device="cpu", generator=generator)
        if getattr(config.train, "deterministic_validation", False)
        else None
    )
    if not config.data.load_vae_feat:
        vae = get_vae(config.vae.vae_type, config.vae.vae_pretrained, accelerator.device).to(torch.float16)
    tokenizer = text_encoder = None
    if not config.data.load_text_feat:
        tokenizer, text_encoder = get_tokenizer_and_text_encoder(
            name=config.text_encoder.text_encoder_name, device=accelerator.device
        )
        text_embed_dim = text_encoder.config.hidden_size
    else:
        text_embed_dim = config.text_encoder.caption_channels

    logger.info(f"vae type: {config.vae.vae_type}")
    if config.text_encoder.chi_prompt:
        chi_prompt = "\n".join(config.text_encoder.chi_prompt)
        logger.info(f"Complex Human Instruct: {chi_prompt}")

    os.makedirs(config.train.null_embed_root, exist_ok=True)
    null_embed_path = osp.join(
        config.train.null_embed_root,
        f"null_embed_diffusers_{config.text_encoder.text_encoder_name}_{max_length}token_{text_embed_dim}.pth",
    )
    if config.train.visualize and len(config.train.validation_prompts):
        # preparing embeddings for visualization. We put it here for saving GPU memory
        valid_prompt_embed_suffix = f"{max_length}token_{config.text_encoder.text_encoder_name}_{text_embed_dim}.pth"
        validation_prompts = config.train.validation_prompts
        skip = True
        if config.text_encoder.chi_prompt:
            uuid_chi_prompt = hashlib.sha256(chi_prompt.encode()).hexdigest()
        else:
            uuid_chi_prompt = hashlib.sha256(b"").hexdigest()
        config.train.valid_prompt_embed_root = osp.join(config.train.valid_prompt_embed_root, uuid_chi_prompt)
        Path(config.train.valid_prompt_embed_root).mkdir(parents=True, exist_ok=True)

        if config.text_encoder.chi_prompt:
            # Save complex human instruct to a file
            chi_prompt_file = osp.join(config.train.valid_prompt_embed_root, "chi_prompt.txt")
            with open(chi_prompt_file, "w", encoding="utf-8") as f:
                f.write(chi_prompt)

        for prompt in validation_prompts:
            prompt_embed_path = osp.join(
                config.train.valid_prompt_embed_root, f"{prompt[:50]}_{valid_prompt_embed_suffix}"
            )
            if not (osp.exists(prompt_embed_path) and osp.exists(null_embed_path)):
                skip = False
                logger.info("Preparing Visualization prompt embeddings...")
                break
        if accelerator.is_main_process and not skip:
            if config.data.load_text_feat and (tokenizer is None or text_encoder is None):
                logger.info(f"Loading text encoder and tokenizer from {config.text_encoder.text_encoder_name} ...")
                tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder.text_encoder_name)

            for prompt in validation_prompts:
                prompt_embed_path = osp.join(
                    config.train.valid_prompt_embed_root, f"{prompt[:50]}_{valid_prompt_embed_suffix}"
                )
                if "T5" in config.text_encoder.text_encoder_name:
                    txt_tokens = tokenizer(
                        prompt, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
                    ).to(accelerator.device)
                    caption_emb = text_encoder(txt_tokens.input_ids, attention_mask=txt_tokens.attention_mask)[0]
                    caption_emb_mask = txt_tokens.attention_mask
                elif (
                    "gemma" in config.text_encoder.text_encoder_name or "Qwen" in config.text_encoder.text_encoder_name
                ):
                    if not config.text_encoder.chi_prompt:
                        max_length_all = config.text_encoder.model_max_length
                    else:
                        chi_prompt = "\n".join(config.text_encoder.chi_prompt)
                        prompt = chi_prompt + prompt
                        num_chi_prompt_tokens = len(tokenizer.encode(chi_prompt))
                        max_length_all = (
                            num_chi_prompt_tokens + config.text_encoder.model_max_length - 2
                        )  # magic number 2: [bos], [_]

                    txt_tokens = tokenizer(
                        prompt,
                        max_length=max_length_all,
                        padding="max_length",
                        truncation=True,
                        return_tensors="pt",
                    ).to(accelerator.device)
                    select_index = [0] + list(range(-config.text_encoder.model_max_length + 1, 0))
                    caption_emb = text_encoder(txt_tokens.input_ids, attention_mask=txt_tokens.attention_mask)[0][
                        :, select_index
                    ]
                    caption_emb_mask = txt_tokens.attention_mask[:, select_index]
                else:
                    raise ValueError(f"{config.text_encoder.text_encoder_name} is not supported!!")

                torch.save({"caption_embeds": caption_emb, "emb_mask": caption_emb_mask}, prompt_embed_path)

            null_tokens = tokenizer(
                "", max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
            ).to(accelerator.device)
            if "T5" in config.text_encoder.text_encoder_name:
                null_token_emb = text_encoder(null_tokens.input_ids, attention_mask=null_tokens.attention_mask)[0]
            elif "gemma" in config.text_encoder.text_encoder_name or "Qwen" in config.text_encoder.text_encoder_name:
                null_token_emb = text_encoder(null_tokens.input_ids, attention_mask=null_tokens.attention_mask)[0]
            else:
                raise ValueError(f"{config.text_encoder.text_encoder_name} is not supported!!")
            torch.save(
                {"uncond_prompt_embeds": null_token_emb, "uncond_prompt_embeds_mask": null_tokens.attention_mask},
                null_embed_path,
            )
            if config.data.load_text_feat:
                del tokenizer
                del text_encoder
            del null_token_emb
            del null_tokens
            flush()

    os.environ["AUTOCAST_LINEAR_ATTN"] = "true" if config.model.autocast_linear_attn else "false"

    # 1. build scheduler
    train_diffusion = Scheduler(
        str(config.scheduler.train_sampling_steps),
        noise_schedule=config.scheduler.noise_schedule,
        predict_v=config.scheduler.predict_v,
        learn_sigma=learn_sigma,
        pred_sigma=pred_sigma,
        snr=config.train.snr_loss,
        flow_shift=config.scheduler.flow_shift,
    )
    predict_info = f"v-prediction: {config.scheduler.predict_v}, noise schedule: {config.scheduler.noise_schedule}"
    if "flow" in config.scheduler.noise_schedule:
        predict_info += f", flow shift: {config.scheduler.flow_shift}"
    if config.scheduler.weighting_scheme in ["logit_normal", "mode"]:
        predict_info += (
            f", flow weighting: {config.scheduler.weighting_scheme}, "
            f"logit-mean: {config.scheduler.logit_mean}, logit-std: {config.scheduler.logit_std}"
        )
    logger.info(predict_info)

    # 2. build models
    model_kwargs = {
        "pe_interpolation": config.model.pe_interpolation,
        "config": config,
        "model_max_length": max_length,
        "qk_norm": config.model.qk_norm,
        "micro_condition": config.model.micro_condition,
        "caption_channels": text_embed_dim,
        "y_norm": config.text_encoder.y_norm,
        "attn_type": config.model.attn_type,
        "ffn_type": config.model.ffn_type,
        "mlp_ratio": config.model.mlp_ratio,
        "mlp_acts": list(config.model.mlp_acts),
        "in_channels": config.vae.vae_latent_dim,
        "y_norm_scale_factor": config.text_encoder.y_norm_scale_factor,
        "use_pe": config.model.use_pe,
        "linear_head_dim": config.model.linear_head_dim,
        "pred_sigma": pred_sigma,
        "learn_sigma": learn_sigma,
    }
    model = build_model(
        config.model.model,
        config.train.grad_checkpointing,
        getattr(config.model, "fp32_attention", False),
        input_size=latent_size,
        **model_kwargs,
    ).train()
    logger.info(
        colored(
            f"{model.__class__.__name__}:{config.model.model}, "
            f"Model Parameters: {sum(p.numel() for p in model.parameters()) / 1e6:.2f}M",
            "green",
            attrs=["bold"],
        )
    )
    # 2-1. load model
    if args.load_from is not None:
        config.model.load_from = args.load_from
    if config.model.load_from is not None and load_from:
        _, missing, unexpected, _ = load_checkpoint(
            config.model.load_from,
            model,
            load_ema=config.model.resume_from.get("load_ema", False),
            null_embed_path=null_embed_path,
        )
        logger.warning(f"Missing keys: {missing}")
        logger.warning(f"Unexpected keys: {unexpected}")

    # prepare for FSDP clip grad norm calculation
    if accelerator.distributed_type == DistributedType.FSDP:
        for m in accelerator._models:
            m.clip_grad_norm_ = types.MethodType(clip_grad_norm_, m)

    # 3. build dataloader
    config.data.data_dir = config.data.data_dir if isinstance(config.data.data_dir, list) else [config.data.data_dir]
    config.data.data_dir = [
        data if data.startswith(("https://", "http://", "gs://", "/", "~")) else osp.abspath(osp.expanduser(data))
        for data in config.data.data_dir
    ]
    num_replicas = int(os.environ["WORLD_SIZE"])
    rank = int(os.environ["RANK"])
    dataset = build_dataset(
        asdict(config.data),
        resolution=image_size,
        aspect_ratio_type=config.model.aspect_ratio_type,
        real_prompt_ratio=config.train.real_prompt_ratio,
        max_length=max_length,
        config=config,
        caption_proportion=config.data.caption_proportion,
        sort_dataset=config.data.sort_dataset,
        vae_downsample_rate=config.vae.vae_downsample_rate,
    )
    accelerator.wait_for_everyone()
    if config.model.multi_scale:
        drop_last = True
        uuid = hashlib.sha256("-".join(config.data.data_dir).encode()).hexdigest()[:8]
        cache_dir = osp.expanduser(f"~/.cache/_wids_batchsampler_cache")
        os.makedirs(cache_dir, exist_ok=True)
        base_pattern = (
            f"{cache_dir}/{getpass.getuser()}-{uuid}-sort_dataset{config.data.sort_dataset}"
            f"-hq_only{config.data.hq_only}-valid_num{config.data.valid_num}"
            f"-aspect_ratio{len(dataset.aspect_ratio)}-droplast{drop_last}"
            f"dataset_len{len(dataset)}"
        )
        cache_file = f"{base_pattern}-num_replicas{num_replicas}-rank{rank}"
        for i in config.data.data_dir:
            cache_file += f"-{i}"
        cache_file += ".json"

        sampler = DistributedRangedSampler(dataset, num_replicas=num_replicas, rank=rank)
        batch_sampler = AspectRatioBatchSampler(
            sampler=sampler,
            dataset=dataset,
            batch_size=config.train.train_batch_size,
            aspect_ratios=dataset.aspect_ratio,
            drop_last=drop_last,
            ratio_nums=dataset.ratio_nums,
            config=config,
            valid_num=config.data.valid_num,
            hq_only=config.data.hq_only,
            cache_file=cache_file,
            caching=args.caching,
        )
        train_dataloader = build_dataloader(dataset, batch_sampler=batch_sampler, num_workers=config.train.num_workers)
        train_dataloader_len = len(train_dataloader)
        logger.info(f"rank-{rank} Cached file len: {len(train_dataloader.batch_sampler.cached_idx)}")
    else:
        sampler = DistributedRangedSampler(dataset, num_replicas=num_replicas, rank=rank)
        train_dataloader = build_dataloader(
            dataset,
            num_workers=config.train.num_workers,
            batch_size=config.train.train_batch_size,
            shuffle=False,
            sampler=sampler,
        )
        train_dataloader_len = len(train_dataloader)
    load_vae_feat = getattr(train_dataloader.dataset, "load_vae_feat", False)
    load_text_feat = getattr(train_dataloader.dataset, "load_text_feat", False)

    # 4. build optimizer and lr scheduler
    lr_scale_ratio = 1
    if getattr(config.train, "auto_lr", None):
        lr_scale_ratio = auto_scale_lr(
            config.train.train_batch_size * get_world_size() * config.train.gradient_accumulation_steps,
            config.train.optimizer,
            **config.train.auto_lr,
        )
    optimizer = build_optimizer(model, config.train.optimizer)
    if config.train.lr_schedule_args and config.train.lr_schedule_args.get("num_warmup_steps", None):
        config.train.lr_schedule_args["num_warmup_steps"] = (
            config.train.lr_schedule_args["num_warmup_steps"] * num_replicas
        )
    lr_scheduler = build_lr_scheduler(config.train, optimizer, train_dataloader, lr_scale_ratio)
    logger.warning(
        f"{colored(f'Basic Setting: ', 'green', attrs=['bold'])}"
        f"lr: {config.train.optimizer['lr']:.5f}, bs: {config.train.train_batch_size}, gc: {config.train.grad_checkpointing}, "
        f"gc_accum_step: {config.train.gradient_accumulation_steps}, qk norm: {config.model.qk_norm}, "
        f"fp32 attn: {config.model.fp32_attention}, attn type: {config.model.attn_type}, ffn type: {config.model.ffn_type}, "
        f"text encoder: {config.text_encoder.text_encoder_name}, captions: {config.data.caption_proportion}, precision: {config.model.mixed_precision}"
    )

    timestamp = time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())

    if accelerator.is_main_process:
        tracker_config = dict(vars(config))
        try:
            accelerator.init_trackers(args.tracker_project_name, tracker_config)
        except:
            accelerator.init_trackers(f"tb_{timestamp}")

    start_epoch = 0
    start_step = 0
    total_steps = train_dataloader_len * config.train.num_epochs

    # Resume training
    if config.model.resume_from is not None and config.model.resume_from["checkpoint"] is not None:
        rng_state = None
        ckpt_path = osp.join(config.work_dir, "checkpoints")
        check_flag = osp.exists(ckpt_path) and len(os.listdir(ckpt_path)) != 0
        if config.model.resume_from["checkpoint"] == "latest":
            if check_flag:
                checkpoints = os.listdir(ckpt_path)
                if "latest.pth" in checkpoints and osp.exists(osp.join(ckpt_path, "latest.pth")):
                    config.model.resume_from["checkpoint"] = osp.realpath(osp.join(ckpt_path, "latest.pth"))
                else:
                    checkpoints = [i for i in checkpoints if i.startswith("epoch_")]
                    checkpoints = sorted(checkpoints, key=lambda x: int(x.replace(".pth", "").split("_")[3]))
                    config.model.resume_from["checkpoint"] = osp.join(ckpt_path, checkpoints[-1])
            else:
                config.model.resume_from["checkpoint"] = config.model.load_from

        if config.model.resume_from["checkpoint"] is not None:
            _, missing, unexpected, rng_state = load_checkpoint(
                **config.model.resume_from,
                model=model,
                optimizer=optimizer if check_flag else None,
                lr_scheduler=lr_scheduler if check_flag else None,
                null_embed_path=null_embed_path,
            )

            logger.warning(f"Missing keys: {missing}")
            logger.warning(f"Unexpected keys: {unexpected}")

            path = osp.basename(config.model.resume_from["checkpoint"])
        try:
            start_epoch = int(path.replace(".pth", "").split("_")[1]) - 1
            start_step = int(path.replace(".pth", "").split("_")[3])
        except:
            pass

        # resume randomise
        if rng_state:
            logger.info("resuming randomise")
            torch.set_rng_state(rng_state["torch"])
            np.random.set_state(rng_state["numpy"])
            random.setstate(rng_state["python"])
            generator.set_state(rng_state["generator"])  # resume generator status
            try:
                torch.cuda.set_rng_state_all(rng_state["torch_cuda"])
            except:
                logger.warning("Failed to resume torch_cuda rng state")

    # Prepare everything
    # There is no specific order to remember, you just need to unpack the
    # objects in the same order you gave them to the prepare method.
    model = accelerator.prepare(model)
    optimizer, lr_scheduler = accelerator.prepare(optimizer, lr_scheduler)

    # Start Training
    train(
        config=config,
        args=args,
        accelerator=accelerator,
        model=model,
        optimizer=optimizer,
        lr_scheduler=lr_scheduler,
        train_dataloader=train_dataloader,
        train_diffusion=train_diffusion,
        logger=logger,
    )


if __name__ == "__main__":

    main()