Spaces:
Runtime error
Runtime error
File size: 44,965 Bytes
f1f9265 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import datetime
import getpass
import hashlib
import json
import os
import os.path as osp
import random
import time
import types
import warnings
from dataclasses import asdict
from pathlib import Path
import numpy as np
import pyrallis
import torch
from accelerate import Accelerator, InitProcessGroupKwargs
from accelerate.utils import DistributedType
from PIL import Image
from termcolor import colored
warnings.filterwarnings("ignore") # ignore warning
from diffusion import DPMS, FlowEuler, Scheduler
from diffusion.data.builder import build_dataloader, build_dataset
from diffusion.data.wids import DistributedRangedSampler
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode, vae_encode
from diffusion.model.respace import compute_density_for_timestep_sampling
from diffusion.utils.checkpoint import load_checkpoint, save_checkpoint
from diffusion.utils.config import SanaConfig
from diffusion.utils.data_sampler import AspectRatioBatchSampler
from diffusion.utils.dist_utils import clip_grad_norm_, flush, get_world_size
from diffusion.utils.logger import LogBuffer, get_root_logger
from diffusion.utils.lr_scheduler import build_lr_scheduler
from diffusion.utils.misc import DebugUnderflowOverflow, init_random_seed, read_config, set_random_seed
from diffusion.utils.optimizer import auto_scale_lr, build_optimizer
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def set_fsdp_env():
os.environ["ACCELERATE_USE_FSDP"] = "true"
os.environ["FSDP_AUTO_WRAP_POLICY"] = "TRANSFORMER_BASED_WRAP"
os.environ["FSDP_BACKWARD_PREFETCH"] = "BACKWARD_PRE"
os.environ["FSDP_TRANSFORMER_CLS_TO_WRAP"] = "SanaBlock"
@torch.inference_mode()
def log_validation(accelerator, config, model, logger, step, device, vae=None, init_noise=None):
torch.cuda.empty_cache()
vis_sampler = config.scheduler.vis_sampler
model = accelerator.unwrap_model(model).eval()
hw = torch.tensor([[image_size, image_size]], dtype=torch.float, device=device).repeat(1, 1)
ar = torch.tensor([[1.0]], device=device).repeat(1, 1)
null_y = torch.load(null_embed_path, map_location="cpu")
null_y = null_y["uncond_prompt_embeds"].to(device)
# Create sampling noise:
logger.info("Running validation... ")
image_logs = []
def run_sampling(init_z=None, label_suffix="", vae=None, sampler="dpm-solver"):
latents = []
current_image_logs = []
for prompt in validation_prompts:
z = (
torch.randn(1, config.vae.vae_latent_dim, latent_size, latent_size, device=device)
if init_z is None
else init_z
)
embed = torch.load(
osp.join(config.train.valid_prompt_embed_root, f"{prompt[:50]}_{valid_prompt_embed_suffix}"),
map_location="cpu",
)
caption_embs, emb_masks = embed["caption_embeds"].to(device), embed["emb_mask"].to(device)
# caption_embs = caption_embs[:, None]
# emb_masks = emb_masks[:, None]
model_kwargs = dict(data_info={"img_hw": hw, "aspect_ratio": ar}, mask=emb_masks)
if sampler == "dpm-solver":
dpm_solver = DPMS(
model.forward_with_dpmsolver,
condition=caption_embs,
uncondition=null_y,
cfg_scale=4.5,
model_kwargs=model_kwargs,
)
denoised = dpm_solver.sample(
z,
steps=14,
order=2,
skip_type="time_uniform",
method="multistep",
)
elif sampler == "flow_euler":
flow_solver = FlowEuler(
model, condition=caption_embs, uncondition=null_y, cfg_scale=4.5, model_kwargs=model_kwargs
)
denoised = flow_solver.sample(z, steps=28)
elif sampler == "flow_dpm-solver":
dpm_solver = DPMS(
model.forward_with_dpmsolver,
condition=caption_embs,
uncondition=null_y,
cfg_scale=4.5,
model_type="flow",
model_kwargs=model_kwargs,
schedule="FLOW",
)
denoised = dpm_solver.sample(
z,
steps=20,
order=2,
skip_type="time_uniform_flow",
method="multistep",
flow_shift=config.scheduler.flow_shift,
)
else:
raise ValueError(f"{sampler} not implemented")
latents.append(denoised)
torch.cuda.empty_cache()
if vae is None:
vae = get_vae(config.vae.vae_type, config.vae.vae_pretrained, accelerator.device).to(torch.float16)
for prompt, latent in zip(validation_prompts, latents):
latent = latent.to(torch.float16)
samples = vae_decode(config.vae.vae_type, vae, latent)
samples = (
torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()[0]
)
image = Image.fromarray(samples)
current_image_logs.append({"validation_prompt": prompt + label_suffix, "images": [image]})
return current_image_logs
# First run with original noise
image_logs += run_sampling(init_z=None, label_suffix="", vae=vae, sampler=vis_sampler)
# Second run with init_noise if provided
if init_noise is not None:
init_noise = torch.clone(init_noise).to(device)
image_logs += run_sampling(init_z=init_noise, label_suffix=" w/ init noise", vae=vae, sampler=vis_sampler)
formatted_images = []
for log in image_logs:
images = log["images"]
validation_prompt = log["validation_prompt"]
for image in images:
formatted_images.append((validation_prompt, np.asarray(image)))
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
for validation_prompt, image in formatted_images:
tracker.writer.add_images(validation_prompt, image[None, ...], step, dataformats="NHWC")
elif tracker.name == "wandb":
import wandb
wandb_images = []
for validation_prompt, image in formatted_images:
wandb_images.append(wandb.Image(image, caption=validation_prompt, file_type="jpg"))
tracker.log({"validation": wandb_images})
else:
logger.warn(f"image logging not implemented for {tracker.name}")
def concatenate_images(image_caption, images_per_row=5, image_format="webp"):
import io
images = [log["images"][0] for log in image_caption]
if images[0].size[0] > 1024:
images = [image.resize((1024, 1024)) for image in images]
widths, heights = zip(*(img.size for img in images))
max_width = max(widths)
total_height = sum(heights[i : i + images_per_row][0] for i in range(0, len(images), images_per_row))
new_im = Image.new("RGB", (max_width * images_per_row, total_height))
y_offset = 0
for i in range(0, len(images), images_per_row):
row_images = images[i : i + images_per_row]
x_offset = 0
for img in row_images:
new_im.paste(img, (x_offset, y_offset))
x_offset += max_width
y_offset += heights[i]
webp_image_bytes = io.BytesIO()
new_im.save(webp_image_bytes, format=image_format)
webp_image_bytes.seek(0)
new_im = Image.open(webp_image_bytes)
return new_im
if config.train.local_save_vis:
file_format = "webp"
local_vis_save_path = osp.join(config.work_dir, "log_vis")
os.umask(0o000)
os.makedirs(local_vis_save_path, exist_ok=True)
concatenated_image = concatenate_images(image_logs, images_per_row=5, image_format=file_format)
save_path = (
osp.join(local_vis_save_path, f"vis_{step}.{file_format}")
if init_noise is None
else osp.join(local_vis_save_path, f"vis_{step}_w_init.{file_format}")
)
concatenated_image.save(save_path)
del vae
flush()
return image_logs
def train(config, args, accelerator, model, optimizer, lr_scheduler, train_dataloader, train_diffusion, logger):
if getattr(config.train, "debug_nan", False):
DebugUnderflowOverflow(model)
logger.info("NaN debugger registered. Start to detect overflow during training.")
log_buffer = LogBuffer()
global_step = start_step + 1
skip_step = max(config.train.skip_step, global_step) % train_dataloader_len
skip_step = skip_step if skip_step < (train_dataloader_len - 20) else 0
loss_nan_timer = 0
# Cache Dataset for BatchSampler
if args.caching and config.model.multi_scale:
caching_start = time.time()
logger.info(
f"Start caching your dataset for batch_sampler at {cache_file}. \n"
f"This may take a lot of time...No training will launch"
)
train_dataloader.batch_sampler.sampler.set_start(max(train_dataloader.batch_sampler.exist_ids, 0))
accelerator.wait_for_everyone()
for index, _ in enumerate(train_dataloader):
accelerator.wait_for_everyone()
if index % 2000 == 0:
logger.info(
f"rank: {rank}, Cached file len: {len(train_dataloader.batch_sampler.cached_idx)} / {len(train_dataloader)}"
)
print(
f"rank: {rank}, Cached file len: {len(train_dataloader.batch_sampler.cached_idx)} / {len(train_dataloader)}"
)
if (time.time() - caching_start) / 3600 > 3.7:
json.dump(train_dataloader.batch_sampler.cached_idx, open(cache_file, "w"), indent=4)
accelerator.wait_for_everyone()
break
if len(train_dataloader.batch_sampler.cached_idx) == len(train_dataloader) - 1000:
logger.info(
f"Saving rank: {rank}, Cached file len: {len(train_dataloader.batch_sampler.cached_idx)} / {len(train_dataloader)}"
)
json.dump(train_dataloader.batch_sampler.cached_idx, open(cache_file, "w"), indent=4)
accelerator.wait_for_everyone()
continue
accelerator.wait_for_everyone()
print(f"Saving rank-{rank} Cached file len: {len(train_dataloader.batch_sampler.cached_idx)}")
json.dump(train_dataloader.batch_sampler.cached_idx, open(cache_file, "w"), indent=4)
return
# Now you train the model
for epoch in range(start_epoch + 1, config.train.num_epochs + 1):
time_start, last_tic = time.time(), time.time()
sampler = (
train_dataloader.batch_sampler.sampler
if (num_replicas > 1 or config.model.multi_scale)
else train_dataloader.sampler
)
sampler.set_epoch(epoch)
sampler.set_start(max((skip_step - 1) * config.train.train_batch_size, 0))
if skip_step > 1 and accelerator.is_main_process:
logger.info(f"Skipped Steps: {skip_step}")
skip_step = 1
data_time_start = time.time()
data_time_all = 0
lm_time_all = 0
vae_time_all = 0
model_time_all = 0
for step, batch in enumerate(train_dataloader):
# image, json_info, key = batch
accelerator.wait_for_everyone()
data_time_all += time.time() - data_time_start
vae_time_start = time.time()
if load_vae_feat:
z = batch[0].to(accelerator.device)
else:
with torch.no_grad():
with torch.amp.autocast(
"cuda",
enabled=(config.model.mixed_precision == "fp16" or config.model.mixed_precision == "bf16"),
):
z = vae_encode(
config.vae.vae_type, vae, batch[0], config.vae.sample_posterior, accelerator.device
)
accelerator.wait_for_everyone()
vae_time_all += time.time() - vae_time_start
clean_images = z
data_info = batch[3]
lm_time_start = time.time()
if load_text_feat:
y = batch[1] # bs, 1, N, C
y_mask = batch[2] # bs, 1, 1, N
else:
if "T5" in config.text_encoder.text_encoder_name:
with torch.no_grad():
txt_tokens = tokenizer(
batch[1], max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
).to(accelerator.device)
y = text_encoder(txt_tokens.input_ids, attention_mask=txt_tokens.attention_mask)[0][:, None]
y_mask = txt_tokens.attention_mask[:, None, None]
elif (
"gemma" in config.text_encoder.text_encoder_name or "Qwen" in config.text_encoder.text_encoder_name
):
with torch.no_grad():
if not config.text_encoder.chi_prompt:
max_length_all = config.text_encoder.model_max_length
prompt = batch[1]
else:
chi_prompt = "\n".join(config.text_encoder.chi_prompt)
prompt = [chi_prompt + i for i in batch[1]]
num_chi_prompt_tokens = len(tokenizer.encode(chi_prompt))
max_length_all = (
num_chi_prompt_tokens + config.text_encoder.model_max_length - 2
) # magic number 2: [bos], [_]
txt_tokens = tokenizer(
prompt,
padding="max_length",
max_length=max_length_all,
truncation=True,
return_tensors="pt",
).to(accelerator.device)
select_index = [0] + list(
range(-config.text_encoder.model_max_length + 1, 0)
) # first bos and end N-1
y = text_encoder(txt_tokens.input_ids, attention_mask=txt_tokens.attention_mask)[0][:, None][
:, :, select_index
]
y_mask = txt_tokens.attention_mask[:, None, None][:, :, :, select_index]
else:
print("error")
exit()
# Sample a random timestep for each image
bs = clean_images.shape[0]
timesteps = torch.randint(
0, config.scheduler.train_sampling_steps, (bs,), device=clean_images.device
).long()
if config.scheduler.weighting_scheme in ["logit_normal"]:
# adapting from diffusers.training_utils
u = compute_density_for_timestep_sampling(
weighting_scheme=config.scheduler.weighting_scheme,
batch_size=bs,
logit_mean=config.scheduler.logit_mean,
logit_std=config.scheduler.logit_std,
mode_scale=None, # not used
)
timesteps = (u * config.scheduler.train_sampling_steps).long().to(clean_images.device)
grad_norm = None
accelerator.wait_for_everyone()
lm_time_all += time.time() - lm_time_start
model_time_start = time.time()
with accelerator.accumulate(model):
# Predict the noise residual
optimizer.zero_grad()
loss_term = train_diffusion.training_losses(
model, clean_images, timesteps, model_kwargs=dict(y=y, mask=y_mask, data_info=data_info)
)
loss = loss_term["loss"].mean()
accelerator.backward(loss)
if accelerator.sync_gradients:
grad_norm = accelerator.clip_grad_norm_(model.parameters(), config.train.gradient_clip)
optimizer.step()
lr_scheduler.step()
accelerator.wait_for_everyone()
model_time_all += time.time() - model_time_start
if torch.any(torch.isnan(loss)):
loss_nan_timer += 1
lr = lr_scheduler.get_last_lr()[0]
logs = {args.loss_report_name: accelerator.gather(loss).mean().item()}
if grad_norm is not None:
logs.update(grad_norm=accelerator.gather(grad_norm).mean().item())
log_buffer.update(logs)
if (step + 1) % config.train.log_interval == 0 or (step + 1) == 1:
accelerator.wait_for_everyone()
t = (time.time() - last_tic) / config.train.log_interval
t_d = data_time_all / config.train.log_interval
t_m = model_time_all / config.train.log_interval
t_lm = lm_time_all / config.train.log_interval
t_vae = vae_time_all / config.train.log_interval
avg_time = (time.time() - time_start) / (step + 1)
eta = str(datetime.timedelta(seconds=int(avg_time * (total_steps - global_step - 1))))
eta_epoch = str(
datetime.timedelta(
seconds=int(
avg_time
* (train_dataloader_len - sampler.step_start // config.train.train_batch_size - step - 1)
)
)
)
log_buffer.average()
current_step = (
global_step - sampler.step_start // config.train.train_batch_size
) % train_dataloader_len
current_step = train_dataloader_len if current_step == 0 else current_step
info = (
f"Epoch: {epoch} | Global Step: {global_step} | Local Step: {current_step} // {train_dataloader_len}, "
f"total_eta: {eta}, epoch_eta:{eta_epoch}, time: all:{t:.3f}, model:{t_m:.3f}, data:{t_d:.3f}, "
f"lm:{t_lm:.3f}, vae:{t_vae:.3f}, lr:{lr:.3e}, Cap: {batch[5][0]}, "
)
info += (
f"s:({model.module.h}, {model.module.w}), "
if hasattr(model, "module")
else f"s:({model.h}, {model.w}), "
)
info += ", ".join([f"{k}:{v:.4f}" for k, v in log_buffer.output.items()])
last_tic = time.time()
log_buffer.clear()
data_time_all = 0
model_time_all = 0
lm_time_all = 0
vae_time_all = 0
if accelerator.is_main_process:
logger.info(info)
logs.update(lr=lr)
if accelerator.is_main_process:
accelerator.log(logs, step=global_step)
global_step += 1
if loss_nan_timer > 20:
raise ValueError("Loss is NaN too much times. Break here.")
if (
global_step % config.train.save_model_steps == 0
or (time.time() - training_start_time) / 3600 > config.train.training_hours
):
accelerator.wait_for_everyone()
if accelerator.is_main_process:
os.umask(0o000)
ckpt_saved_path = save_checkpoint(
osp.join(config.work_dir, "checkpoints"),
epoch=epoch,
step=global_step,
model=accelerator.unwrap_model(model),
optimizer=optimizer,
lr_scheduler=lr_scheduler,
generator=generator,
add_symlink=True,
)
if config.train.online_metric and global_step % config.train.eval_metric_step == 0 and step > 1:
online_metric_monitor_dir = osp.join(config.work_dir, config.train.online_metric_dir)
os.makedirs(online_metric_monitor_dir, exist_ok=True)
with open(f"{online_metric_monitor_dir}/{ckpt_saved_path.split('/')[-1]}.txt", "w") as f:
f.write(osp.join(config.work_dir, "config.py") + "\n")
f.write(ckpt_saved_path)
if (time.time() - training_start_time) / 3600 > config.train.training_hours:
logger.info(f"Stopping training at epoch {epoch}, step {global_step} due to time limit.")
return
if config.train.visualize and (global_step % config.train.eval_sampling_steps == 0 or (step + 1) == 1):
accelerator.wait_for_everyone()
if accelerator.is_main_process:
if validation_noise is not None:
log_validation(
accelerator=accelerator,
config=config,
model=model,
logger=logger,
step=global_step,
device=accelerator.device,
vae=vae,
init_noise=validation_noise,
)
else:
log_validation(
accelerator=accelerator,
config=config,
model=model,
logger=logger,
step=global_step,
device=accelerator.device,
vae=vae,
)
# avoid dead-lock of multiscale data batch sampler
# for internal, refactor dataloader logic to remove the ad-hoc implementation
if (
config.model.multi_scale
and (train_dataloader_len - sampler.step_start // config.train.train_batch_size - step) < 30
):
global_step = epoch * train_dataloader_len
logger.info("Early stop current iteration")
break
data_time_start = time.time()
if epoch % config.train.save_model_epochs == 0 or epoch == config.train.num_epochs and not config.debug:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
# os.umask(0o000)
ckpt_saved_path = save_checkpoint(
osp.join(config.work_dir, "checkpoints"),
epoch=epoch,
step=global_step,
model=accelerator.unwrap_model(model),
optimizer=optimizer,
lr_scheduler=lr_scheduler,
generator=generator,
add_symlink=True,
)
online_metric_monitor_dir = osp.join(config.work_dir, config.train.online_metric_dir)
os.makedirs(online_metric_monitor_dir, exist_ok=True)
with open(f"{online_metric_monitor_dir}/{ckpt_saved_path.split('/')[-1]}.txt", "w") as f:
f.write(osp.join(config.work_dir, "config.py") + "\n")
f.write(ckpt_saved_path)
accelerator.wait_for_everyone()
@pyrallis.wrap()
def main(cfg: SanaConfig) -> None:
global train_dataloader_len, start_epoch, start_step, vae, generator, num_replicas, rank, training_start_time
global load_vae_feat, load_text_feat, validation_noise, text_encoder, tokenizer
global max_length, validation_prompts, latent_size, valid_prompt_embed_suffix, null_embed_path
global image_size, cache_file, total_steps
config = cfg
args = cfg
# config = read_config(args.config)
training_start_time = time.time()
load_from = True
if args.resume_from or config.model.resume_from:
load_from = False
config.model.resume_from = dict(
checkpoint=args.resume_from or config.model.resume_from,
load_ema=False,
resume_optimizer=True,
resume_lr_scheduler=True,
)
if args.debug:
config.train.log_interval = 1
config.train.train_batch_size = min(64, config.train.train_batch_size)
args.report_to = "tensorboard"
os.umask(0o000)
os.makedirs(config.work_dir, exist_ok=True)
init_handler = InitProcessGroupKwargs()
init_handler.timeout = datetime.timedelta(seconds=5400) # change timeout to avoid a strange NCCL bug
# Initialize accelerator and tensorboard logging
if config.train.use_fsdp:
init_train = "FSDP"
from accelerate import FullyShardedDataParallelPlugin
from torch.distributed.fsdp.fully_sharded_data_parallel import FullStateDictConfig
set_fsdp_env()
fsdp_plugin = FullyShardedDataParallelPlugin(
state_dict_config=FullStateDictConfig(offload_to_cpu=False, rank0_only=False),
)
else:
init_train = "DDP"
fsdp_plugin = None
accelerator = Accelerator(
mixed_precision=config.model.mixed_precision,
gradient_accumulation_steps=config.train.gradient_accumulation_steps,
log_with=args.report_to,
project_dir=osp.join(config.work_dir, "logs"),
fsdp_plugin=fsdp_plugin,
kwargs_handlers=[init_handler],
)
log_name = "train_log.log"
logger = get_root_logger(osp.join(config.work_dir, log_name))
logger.info(accelerator.state)
config.train.seed = init_random_seed(getattr(config.train, "seed", None))
set_random_seed(config.train.seed + int(os.environ["LOCAL_RANK"]))
generator = torch.Generator(device="cpu").manual_seed(config.train.seed)
if accelerator.is_main_process:
pyrallis.dump(config, open(osp.join(config.work_dir, "config.yaml"), "w"), sort_keys=False, indent=4)
if args.report_to == "wandb":
import wandb
wandb.init(project=args.tracker_project_name, name=args.name, resume="allow", id=args.name)
logger.info(f"Config: \n{config}")
logger.info(f"World_size: {get_world_size()}, seed: {config.train.seed}")
logger.info(f"Initializing: {init_train} for training")
image_size = config.model.image_size
latent_size = int(image_size) // config.vae.vae_downsample_rate
pred_sigma = getattr(config.scheduler, "pred_sigma", True)
learn_sigma = getattr(config.scheduler, "learn_sigma", True) and pred_sigma
max_length = config.text_encoder.model_max_length
vae = None
validation_noise = (
torch.randn(1, config.vae.vae_latent_dim, latent_size, latent_size, device="cpu", generator=generator)
if getattr(config.train, "deterministic_validation", False)
else None
)
if not config.data.load_vae_feat:
vae = get_vae(config.vae.vae_type, config.vae.vae_pretrained, accelerator.device).to(torch.float16)
tokenizer = text_encoder = None
if not config.data.load_text_feat:
tokenizer, text_encoder = get_tokenizer_and_text_encoder(
name=config.text_encoder.text_encoder_name, device=accelerator.device
)
text_embed_dim = text_encoder.config.hidden_size
else:
text_embed_dim = config.text_encoder.caption_channels
logger.info(f"vae type: {config.vae.vae_type}")
if config.text_encoder.chi_prompt:
chi_prompt = "\n".join(config.text_encoder.chi_prompt)
logger.info(f"Complex Human Instruct: {chi_prompt}")
os.makedirs(config.train.null_embed_root, exist_ok=True)
null_embed_path = osp.join(
config.train.null_embed_root,
f"null_embed_diffusers_{config.text_encoder.text_encoder_name}_{max_length}token_{text_embed_dim}.pth",
)
if config.train.visualize and len(config.train.validation_prompts):
# preparing embeddings for visualization. We put it here for saving GPU memory
valid_prompt_embed_suffix = f"{max_length}token_{config.text_encoder.text_encoder_name}_{text_embed_dim}.pth"
validation_prompts = config.train.validation_prompts
skip = True
if config.text_encoder.chi_prompt:
uuid_chi_prompt = hashlib.sha256(chi_prompt.encode()).hexdigest()
else:
uuid_chi_prompt = hashlib.sha256(b"").hexdigest()
config.train.valid_prompt_embed_root = osp.join(config.train.valid_prompt_embed_root, uuid_chi_prompt)
Path(config.train.valid_prompt_embed_root).mkdir(parents=True, exist_ok=True)
if config.text_encoder.chi_prompt:
# Save complex human instruct to a file
chi_prompt_file = osp.join(config.train.valid_prompt_embed_root, "chi_prompt.txt")
with open(chi_prompt_file, "w", encoding="utf-8") as f:
f.write(chi_prompt)
for prompt in validation_prompts:
prompt_embed_path = osp.join(
config.train.valid_prompt_embed_root, f"{prompt[:50]}_{valid_prompt_embed_suffix}"
)
if not (osp.exists(prompt_embed_path) and osp.exists(null_embed_path)):
skip = False
logger.info("Preparing Visualization prompt embeddings...")
break
if accelerator.is_main_process and not skip:
if config.data.load_text_feat and (tokenizer is None or text_encoder is None):
logger.info(f"Loading text encoder and tokenizer from {config.text_encoder.text_encoder_name} ...")
tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder.text_encoder_name)
for prompt in validation_prompts:
prompt_embed_path = osp.join(
config.train.valid_prompt_embed_root, f"{prompt[:50]}_{valid_prompt_embed_suffix}"
)
if "T5" in config.text_encoder.text_encoder_name:
txt_tokens = tokenizer(
prompt, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
).to(accelerator.device)
caption_emb = text_encoder(txt_tokens.input_ids, attention_mask=txt_tokens.attention_mask)[0]
caption_emb_mask = txt_tokens.attention_mask
elif (
"gemma" in config.text_encoder.text_encoder_name or "Qwen" in config.text_encoder.text_encoder_name
):
if not config.text_encoder.chi_prompt:
max_length_all = config.text_encoder.model_max_length
else:
chi_prompt = "\n".join(config.text_encoder.chi_prompt)
prompt = chi_prompt + prompt
num_chi_prompt_tokens = len(tokenizer.encode(chi_prompt))
max_length_all = (
num_chi_prompt_tokens + config.text_encoder.model_max_length - 2
) # magic number 2: [bos], [_]
txt_tokens = tokenizer(
prompt,
max_length=max_length_all,
padding="max_length",
truncation=True,
return_tensors="pt",
).to(accelerator.device)
select_index = [0] + list(range(-config.text_encoder.model_max_length + 1, 0))
caption_emb = text_encoder(txt_tokens.input_ids, attention_mask=txt_tokens.attention_mask)[0][
:, select_index
]
caption_emb_mask = txt_tokens.attention_mask[:, select_index]
else:
raise ValueError(f"{config.text_encoder.text_encoder_name} is not supported!!")
torch.save({"caption_embeds": caption_emb, "emb_mask": caption_emb_mask}, prompt_embed_path)
null_tokens = tokenizer(
"", max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
).to(accelerator.device)
if "T5" in config.text_encoder.text_encoder_name:
null_token_emb = text_encoder(null_tokens.input_ids, attention_mask=null_tokens.attention_mask)[0]
elif "gemma" in config.text_encoder.text_encoder_name or "Qwen" in config.text_encoder.text_encoder_name:
null_token_emb = text_encoder(null_tokens.input_ids, attention_mask=null_tokens.attention_mask)[0]
else:
raise ValueError(f"{config.text_encoder.text_encoder_name} is not supported!!")
torch.save(
{"uncond_prompt_embeds": null_token_emb, "uncond_prompt_embeds_mask": null_tokens.attention_mask},
null_embed_path,
)
if config.data.load_text_feat:
del tokenizer
del text_encoder
del null_token_emb
del null_tokens
flush()
os.environ["AUTOCAST_LINEAR_ATTN"] = "true" if config.model.autocast_linear_attn else "false"
# 1. build scheduler
train_diffusion = Scheduler(
str(config.scheduler.train_sampling_steps),
noise_schedule=config.scheduler.noise_schedule,
predict_v=config.scheduler.predict_v,
learn_sigma=learn_sigma,
pred_sigma=pred_sigma,
snr=config.train.snr_loss,
flow_shift=config.scheduler.flow_shift,
)
predict_info = f"v-prediction: {config.scheduler.predict_v}, noise schedule: {config.scheduler.noise_schedule}"
if "flow" in config.scheduler.noise_schedule:
predict_info += f", flow shift: {config.scheduler.flow_shift}"
if config.scheduler.weighting_scheme in ["logit_normal", "mode"]:
predict_info += (
f", flow weighting: {config.scheduler.weighting_scheme}, "
f"logit-mean: {config.scheduler.logit_mean}, logit-std: {config.scheduler.logit_std}"
)
logger.info(predict_info)
# 2. build models
model_kwargs = {
"pe_interpolation": config.model.pe_interpolation,
"config": config,
"model_max_length": max_length,
"qk_norm": config.model.qk_norm,
"micro_condition": config.model.micro_condition,
"caption_channels": text_embed_dim,
"y_norm": config.text_encoder.y_norm,
"attn_type": config.model.attn_type,
"ffn_type": config.model.ffn_type,
"mlp_ratio": config.model.mlp_ratio,
"mlp_acts": list(config.model.mlp_acts),
"in_channels": config.vae.vae_latent_dim,
"y_norm_scale_factor": config.text_encoder.y_norm_scale_factor,
"use_pe": config.model.use_pe,
"linear_head_dim": config.model.linear_head_dim,
"pred_sigma": pred_sigma,
"learn_sigma": learn_sigma,
}
model = build_model(
config.model.model,
config.train.grad_checkpointing,
getattr(config.model, "fp32_attention", False),
input_size=latent_size,
**model_kwargs,
).train()
logger.info(
colored(
f"{model.__class__.__name__}:{config.model.model}, "
f"Model Parameters: {sum(p.numel() for p in model.parameters()) / 1e6:.2f}M",
"green",
attrs=["bold"],
)
)
# 2-1. load model
if args.load_from is not None:
config.model.load_from = args.load_from
if config.model.load_from is not None and load_from:
_, missing, unexpected, _ = load_checkpoint(
config.model.load_from,
model,
load_ema=config.model.resume_from.get("load_ema", False),
null_embed_path=null_embed_path,
)
logger.warning(f"Missing keys: {missing}")
logger.warning(f"Unexpected keys: {unexpected}")
# prepare for FSDP clip grad norm calculation
if accelerator.distributed_type == DistributedType.FSDP:
for m in accelerator._models:
m.clip_grad_norm_ = types.MethodType(clip_grad_norm_, m)
# 3. build dataloader
config.data.data_dir = config.data.data_dir if isinstance(config.data.data_dir, list) else [config.data.data_dir]
config.data.data_dir = [
data if data.startswith(("https://", "http://", "gs://", "/", "~")) else osp.abspath(osp.expanduser(data))
for data in config.data.data_dir
]
num_replicas = int(os.environ["WORLD_SIZE"])
rank = int(os.environ["RANK"])
dataset = build_dataset(
asdict(config.data),
resolution=image_size,
aspect_ratio_type=config.model.aspect_ratio_type,
real_prompt_ratio=config.train.real_prompt_ratio,
max_length=max_length,
config=config,
caption_proportion=config.data.caption_proportion,
sort_dataset=config.data.sort_dataset,
vae_downsample_rate=config.vae.vae_downsample_rate,
)
accelerator.wait_for_everyone()
if config.model.multi_scale:
drop_last = True
uuid = hashlib.sha256("-".join(config.data.data_dir).encode()).hexdigest()[:8]
cache_dir = osp.expanduser(f"~/.cache/_wids_batchsampler_cache")
os.makedirs(cache_dir, exist_ok=True)
base_pattern = (
f"{cache_dir}/{getpass.getuser()}-{uuid}-sort_dataset{config.data.sort_dataset}"
f"-hq_only{config.data.hq_only}-valid_num{config.data.valid_num}"
f"-aspect_ratio{len(dataset.aspect_ratio)}-droplast{drop_last}"
f"dataset_len{len(dataset)}"
)
cache_file = f"{base_pattern}-num_replicas{num_replicas}-rank{rank}"
for i in config.data.data_dir:
cache_file += f"-{i}"
cache_file += ".json"
sampler = DistributedRangedSampler(dataset, num_replicas=num_replicas, rank=rank)
batch_sampler = AspectRatioBatchSampler(
sampler=sampler,
dataset=dataset,
batch_size=config.train.train_batch_size,
aspect_ratios=dataset.aspect_ratio,
drop_last=drop_last,
ratio_nums=dataset.ratio_nums,
config=config,
valid_num=config.data.valid_num,
hq_only=config.data.hq_only,
cache_file=cache_file,
caching=args.caching,
)
train_dataloader = build_dataloader(dataset, batch_sampler=batch_sampler, num_workers=config.train.num_workers)
train_dataloader_len = len(train_dataloader)
logger.info(f"rank-{rank} Cached file len: {len(train_dataloader.batch_sampler.cached_idx)}")
else:
sampler = DistributedRangedSampler(dataset, num_replicas=num_replicas, rank=rank)
train_dataloader = build_dataloader(
dataset,
num_workers=config.train.num_workers,
batch_size=config.train.train_batch_size,
shuffle=False,
sampler=sampler,
)
train_dataloader_len = len(train_dataloader)
load_vae_feat = getattr(train_dataloader.dataset, "load_vae_feat", False)
load_text_feat = getattr(train_dataloader.dataset, "load_text_feat", False)
# 4. build optimizer and lr scheduler
lr_scale_ratio = 1
if getattr(config.train, "auto_lr", None):
lr_scale_ratio = auto_scale_lr(
config.train.train_batch_size * get_world_size() * config.train.gradient_accumulation_steps,
config.train.optimizer,
**config.train.auto_lr,
)
optimizer = build_optimizer(model, config.train.optimizer)
if config.train.lr_schedule_args and config.train.lr_schedule_args.get("num_warmup_steps", None):
config.train.lr_schedule_args["num_warmup_steps"] = (
config.train.lr_schedule_args["num_warmup_steps"] * num_replicas
)
lr_scheduler = build_lr_scheduler(config.train, optimizer, train_dataloader, lr_scale_ratio)
logger.warning(
f"{colored(f'Basic Setting: ', 'green', attrs=['bold'])}"
f"lr: {config.train.optimizer['lr']:.5f}, bs: {config.train.train_batch_size}, gc: {config.train.grad_checkpointing}, "
f"gc_accum_step: {config.train.gradient_accumulation_steps}, qk norm: {config.model.qk_norm}, "
f"fp32 attn: {config.model.fp32_attention}, attn type: {config.model.attn_type}, ffn type: {config.model.ffn_type}, "
f"text encoder: {config.text_encoder.text_encoder_name}, captions: {config.data.caption_proportion}, precision: {config.model.mixed_precision}"
)
timestamp = time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())
if accelerator.is_main_process:
tracker_config = dict(vars(config))
try:
accelerator.init_trackers(args.tracker_project_name, tracker_config)
except:
accelerator.init_trackers(f"tb_{timestamp}")
start_epoch = 0
start_step = 0
total_steps = train_dataloader_len * config.train.num_epochs
# Resume training
if config.model.resume_from is not None and config.model.resume_from["checkpoint"] is not None:
rng_state = None
ckpt_path = osp.join(config.work_dir, "checkpoints")
check_flag = osp.exists(ckpt_path) and len(os.listdir(ckpt_path)) != 0
if config.model.resume_from["checkpoint"] == "latest":
if check_flag:
checkpoints = os.listdir(ckpt_path)
if "latest.pth" in checkpoints and osp.exists(osp.join(ckpt_path, "latest.pth")):
config.model.resume_from["checkpoint"] = osp.realpath(osp.join(ckpt_path, "latest.pth"))
else:
checkpoints = [i for i in checkpoints if i.startswith("epoch_")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.replace(".pth", "").split("_")[3]))
config.model.resume_from["checkpoint"] = osp.join(ckpt_path, checkpoints[-1])
else:
config.model.resume_from["checkpoint"] = config.model.load_from
if config.model.resume_from["checkpoint"] is not None:
_, missing, unexpected, rng_state = load_checkpoint(
**config.model.resume_from,
model=model,
optimizer=optimizer if check_flag else None,
lr_scheduler=lr_scheduler if check_flag else None,
null_embed_path=null_embed_path,
)
logger.warning(f"Missing keys: {missing}")
logger.warning(f"Unexpected keys: {unexpected}")
path = osp.basename(config.model.resume_from["checkpoint"])
try:
start_epoch = int(path.replace(".pth", "").split("_")[1]) - 1
start_step = int(path.replace(".pth", "").split("_")[3])
except:
pass
# resume randomise
if rng_state:
logger.info("resuming randomise")
torch.set_rng_state(rng_state["torch"])
np.random.set_state(rng_state["numpy"])
random.setstate(rng_state["python"])
generator.set_state(rng_state["generator"]) # resume generator status
try:
torch.cuda.set_rng_state_all(rng_state["torch_cuda"])
except:
logger.warning("Failed to resume torch_cuda rng state")
# Prepare everything
# There is no specific order to remember, you just need to unpack the
# objects in the same order you gave them to the prepare method.
model = accelerator.prepare(model)
optimizer, lr_scheduler = accelerator.prepare(optimizer, lr_scheduler)
# Start Training
train(
config=config,
args=args,
accelerator=accelerator,
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
train_dataloader=train_dataloader,
train_diffusion=train_diffusion,
logger=logger,
)
if __name__ == "__main__":
main()
|