File size: 4,574 Bytes
f1f9265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

import os
import random
import re

import numpy as np
import torch

from diffusion.utils.logger import get_root_logger
from tools.download import find_model


def save_checkpoint(
    work_dir,
    epoch,
    model,
    model_ema=None,
    optimizer=None,
    lr_scheduler=None,
    generator=torch.Generator(device="cpu").manual_seed(42),
    keep_last=False,
    step=None,
    add_symlink=False,
):
    os.makedirs(work_dir, exist_ok=True)
    state_dict = dict(state_dict=model.state_dict())
    if model_ema is not None:
        state_dict["state_dict_ema"] = model_ema.state_dict()
    if optimizer is not None:
        state_dict["optimizer"] = optimizer.state_dict()
    if lr_scheduler is not None:
        state_dict["scheduler"] = lr_scheduler.state_dict()
    if epoch is not None:
        state_dict["epoch"] = epoch
        file_path = os.path.join(work_dir, f"epoch_{epoch}.pth")
        if step is not None:
            file_path = file_path.split(".pth")[0] + f"_step_{step}.pth"

    rng_state = {
        "torch": torch.get_rng_state(),
        "torch_cuda": torch.cuda.get_rng_state_all(),
        "numpy": np.random.get_state(),
        "python": random.getstate(),
        "generator": generator.get_state(),
    }
    state_dict["rng_state"] = rng_state

    logger = get_root_logger()
    torch.save(state_dict, file_path)
    logger.info(f"Saved checkpoint of epoch {epoch} to {file_path.format(epoch)}.")
    if keep_last:
        for i in range(epoch):
            previous_ckgt = file_path.format(i)
            if os.path.exists(previous_ckgt):
                os.remove(previous_ckgt)
    if add_symlink:
        link_path = os.path.join(os.path.dirname(file_path), "latest.pth")
        if os.path.exists(link_path) or os.path.islink(link_path):
            os.remove(link_path)
        os.symlink(os.path.abspath(file_path), link_path)

    return file_path


def load_checkpoint(
    checkpoint,
    model,
    model_ema=None,
    optimizer=None,
    lr_scheduler=None,
    load_ema=False,
    resume_optimizer=True,
    resume_lr_scheduler=True,
    null_embed_path=None,
):
    assert isinstance(checkpoint, str)
    logger = get_root_logger()
    ckpt_file = checkpoint
    checkpoint = find_model(ckpt_file)

    state_dict_keys = ["pos_embed", "base_model.pos_embed", "model.pos_embed"]
    for key in state_dict_keys:
        if key in checkpoint["state_dict"]:
            del checkpoint["state_dict"][key]
            if "state_dict_ema" in checkpoint and key in checkpoint["state_dict_ema"]:
                del checkpoint["state_dict_ema"][key]
            break

    if load_ema:
        state_dict = checkpoint["state_dict_ema"]
    else:
        state_dict = checkpoint.get("state_dict", checkpoint)  # to be compatible with the official checkpoint

    null_embed = torch.load(null_embed_path, map_location="cpu")
    state_dict["y_embedder.y_embedding"] = null_embed["uncond_prompt_embeds"][0]
    rng_state = checkpoint.get("rng_state", None)

    missing, unexpect = model.load_state_dict(state_dict, strict=False)
    if model_ema is not None:
        model_ema.load_state_dict(checkpoint["state_dict_ema"], strict=False)
    if optimizer is not None and resume_optimizer:
        optimizer.load_state_dict(checkpoint["optimizer"])
    if lr_scheduler is not None and resume_lr_scheduler:
        lr_scheduler.load_state_dict(checkpoint["scheduler"])

    epoch = 0
    if optimizer is not None:
        epoch = checkpoint.get("epoch", re.match(r".*epoch_(\d*).*.pth", ckpt_file).group()[0])
        logger.info(
            f"Resume checkpoint of epoch {epoch} from {ckpt_file}. Load ema: {load_ema}, "
            f"resume optimizer: {resume_optimizer}, resume lr scheduler: {resume_lr_scheduler}."
        )
        return epoch, missing, unexpect, rng_state
    logger.info(f"Load checkpoint from {ckpt_file}. Load ema: {load_ema}.")
    return epoch, missing, unexpect, rng_state