zzc0208's picture
Upload 265 files
f1f9265 verified
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
# This file is modified from https://github.com/NVlabs/VILA/tree/main/llava/wids
import base64
import gzip
import hashlib
import io
import json
import math
import os
import os.path as osp
import random
import re
import sqlite3
import sys
import tempfile
import uuid
import warnings
from functools import lru_cache, partial
from typing import Any, BinaryIO, Dict, Optional, TypeVar, Union
from urllib.parse import quote, urlparse
import numpy as np
import torch
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from .wids_dl import download_and_open
from .wids_lru import LRUCache
from .wids_mmtar import MMIndexedTar
from .wids_specs import load_dsdesc_and_resolve, urldir
from .wids_tar import TarFileReader, find_index_file
try:
from torch.utils.data import Dataset, Sampler
except ImportError:
class Dataset:
pass
class Sampler:
pass
T = TypeVar("T")
T_co = TypeVar("T_co", covariant=True)
def compute_file_md5sum(fname: Union[str, BinaryIO], chunksize: int = 1000000) -> str:
"""Compute the md5sum of a file in chunks.
Parameters
----------
fname : Union[str, BinaryIO]
Filename or file object
chunksize : int, optional
Chunk size in bytes, by default 1000000
Returns
-------
str
MD5 sum of the file
Examples
--------
>>> compute_file_md5sum("test.txt")
'd41d8cd98f00b204e9800998ecf8427e'
"""
md5 = hashlib.md5()
if isinstance(fname, str):
with open(fname, "rb") as f:
for chunk in iter(lambda: f.read(chunksize), b""):
md5.update(chunk)
else:
fname.seek(0)
for chunk in iter(lambda: fname.read(chunksize), b""):
md5.update(chunk)
return md5.hexdigest()
def compute_file_md5sum(fname: Union[str, BinaryIO], chunksize: int = 1000000) -> str:
"""Compute the md5sum of a file in chunks."""
md5 = hashlib.md5()
if isinstance(fname, str):
with open(fname, "rb") as f:
for chunk in iter(lambda: f.read(chunksize), b""):
md5.update(chunk)
else:
fname.seek(0)
for chunk in iter(lambda: fname.read(chunksize), b""):
md5.update(chunk)
return md5.hexdigest()
def compute_num_samples(fname):
ds = IndexedTarSamples(fname)
return len(ds)
def splitname(fname):
"""Returns the basename and extension of a filename"""
assert "." in fname, "Filename must have an extension"
# basename, extension = re.match(r"^((?:.*/)?.*?)(\..*)$", fname).groups()
basename, extension = os.path.splitext(fname)
return basename, extension
# NOTE(ligeng): change to ordered mapping to more flexbile dict
# TODO(ligeng): submit a PR to fix the mapping issue.
def group_by_key(names):
"""Group the file names by key.
Args:
names: A list of file names.
Returns:
A list of lists of indices, where each sublist contains indices of files
with the same key.
"""
groups = []
kmaps = {}
for i, fname in enumerate(names):
# Ignore files that are not in a subdirectory.
if "." not in fname:
print(f"Warning: Ignoring file {fname} (no '.')")
continue
if fname == ".":
print(f"Warning: Ignoring the '.' file.")
continue
key, ext = splitname(fname)
if key not in kmaps:
kmaps[key] = []
kmaps[key].append(i)
for k, v in kmaps.items():
groups.append(v)
return groups
def default_decoder(sample: Dict[str, Any], format: Optional[Union[bool, str]] = True):
"""A default decoder for webdataset.
This handles common file extensions: .txt, .cls, .cls2,
.jpg, .png, .json, .npy, .mp, .pt, .pth, .pickle, .pkl.
These are the most common extensions used in webdataset.
For other extensions, users can provide their own decoder.
Args:
sample: sample, modified in place
"""
sample = dict(sample)
for key, stream in sample.items():
extensions = key.split(".")
if len(extensions) < 1:
continue
extension = extensions[-1]
if extension in ["gz"]:
decompressed = gzip.decompress(stream.read())
stream = io.BytesIO(decompressed)
if len(extensions) < 2:
sample[key] = stream
continue
extension = extensions[-2]
if key.startswith("__"):
continue
elif extension in ["txt", "text"]:
value = stream.read()
sample[key] = value.decode("utf-8")
elif extension in ["cls", "cls2"]:
value = stream.read()
sample[key] = int(value.decode("utf-8"))
elif extension in ["jpg", "png", "ppm", "pgm", "pbm", "pnm"]:
if format == "PIL":
import PIL.Image
sample[key] = PIL.Image.open(stream)
elif format == "numpy":
import numpy as np
sample[key] = np.asarray(PIL.Image.open(stream))
else:
raise ValueError(f"Unknown format: {format}")
elif extension == "json":
import json
value = stream.read()
sample[key] = json.loads(value)
elif extension == "npy":
import numpy as np
sample[key] = np.load(stream)
elif extension == "mp":
import msgpack
value = stream.read()
sample[key] = msgpack.unpackb(value, raw=False)
elif extension in ["pt", "pth"]:
import torch
sample[key] = torch.load(stream)
elif extension in ["pickle", "pkl"]:
import pickle
sample[key] = pickle.load(stream)
elif extension == "mp4":
# Write stream to a temporary file
# with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmpfile:
# tmpfile.write(stream.read())
# tmpfile_path = tmpfile.name
# sample[key] = tmpfile_path
sample[key] = io.BytesIO(stream.read())
return sample
def update_dict_with_extend(original_dict, update_dict):
for key, value in update_dict.items():
if key in original_dict and isinstance(original_dict[key], list) and isinstance(value, list):
original_dict[key].extend(value)
else:
original_dict[key] = value
open_itfs = {}
class IndexedTarSamples:
"""A class that accesses samples in a tar file. The tar file must follow
WebDataset conventions. The tar file is indexed when the IndexedTarSamples
object is created. The samples are accessed by index using the __getitem__
method. The __getitem__ method returns a dictionary containing the files
for the sample. The key for each file is the extension of the file name.
The key "__key__" is reserved for the key of the sample (the basename of
each file without the extension). For example, if the tar file contains
the files "sample1.jpg" and "sample1.txt", then the sample with key
"sample1" will be returned as the dictionary {"jpg": ..., "txt": ...}.
"""
def __init__(
self,
*,
path=None,
stream=None,
md5sum=None,
expected_size=None,
use_mmap=True,
index_file=find_index_file,
):
assert path is not None or stream is not None
# Create TarFileReader object to read from tar_file
self.path = path
stream = self.stream = stream or open(path, "rb")
# verify the MD5 sum
if md5sum is not None:
stream.seek(0)
got = compute_file_md5sum(stream)
assert got == md5sum, f"MD5 sum mismatch: expected {md5sum}, got {got}"
stream.seek(0)
# use either the mmap or the stream based implementation
# NOTE(ligeng): https://stackoverflow.com/questions/11072705/twitter-trends-api-unicodedecodeerror-utf8-codec-cant-decode-byte-0x8b-in-po
# import gzip
# print("convert to gzip IO stream")
# stream = gzip.GzipFile(fileobj=stream)
if use_mmap:
self.reader = MMIndexedTar(stream)
else:
self.reader = TarFileReader(stream, index_file=index_file)
# Get list of all files in stream
all_files = self.reader.names()
# Group files by key into samples
self.samples = group_by_key(all_files)
# print("DEBUG:", list(all_files)[:20])
# print("DEBUG:", self.samples[:20])
# check that the number of samples is correct
if expected_size is not None:
assert len(self) == expected_size, f"Expected {expected_size} samples, got {len(self)}"
self.uuid = str(uuid.uuid4())
def close(self):
self.reader.close()
if not self.stream.closed:
self.stream.close()
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
# Get indexes of files for the sample at index idx
try:
indexes = self.samples[idx]
except IndexError as e:
print(f"[wids-debug] curr idx: {idx}, total sample length: {len(self.samples)} {e}")
raise e
sample = {}
key = None
for i in indexes:
# Get filename and data for the file at index i
fname, data = self.reader.get_file(i)
# Split filename into key and extension
k, ext = splitname(fname)
# Make sure all files in sample have same key
key = key or k
assert key == k
sample[ext] = data
# Add key to sample
sample["__key__"] = key
return sample
def __str__(self):
return f"<IndexedTarSamples-{id(self)} {self.path}>"
def __repr__(self):
return str(self)
def hash_localname(dldir="/tmp/_wids_cache"):
os.makedirs(dldir, exist_ok=True)
connection = sqlite3.connect(os.path.join(dldir, "cache.db"))
cursor = connection.cursor()
cursor.execute("CREATE TABLE IF NOT EXISTS cache (url TEXT PRIMARY KEY, path TEXT, checksum TEXT)")
connection.commit()
def f(shard):
"""Given a URL, return a local name for the shard."""
if shard.startswith("pipe:"):
# uuencode the entire URL string
hex32 = base64.urlsafe_b64encode(hashlib.sha256(shard.encode()).digest())[:32].decode()
return os.path.join(dldir, "pipe__" + hex32)
else:
# we hash the host and directory components into a 16 character string
dirname = urldir(shard)
hex16 = base64.urlsafe_b64encode(hashlib.sha256(dirname.encode()).digest())[:16].decode()
# the cache name is the concatenation of the hex16 string and the file name component of the URL
cachename = "data__" + hex16 + "__" + os.path.basename(urlparse(shard).path)
checksum = None
cursor.execute(
"INSERT OR REPLACE INTO cache VALUES (?, ?, ?)",
(shard, cachename, checksum),
)
connection.commit()
return os.path.join(dldir, cachename)
return f
def cache_localname(cachedir):
os.makedirs(cachedir, exist_ok=True)
def f(shard):
"""Given a URL, return a local name for the shard."""
path = urlparse(shard).path
fname = os.path.basename(path)
return os.path.join(cachedir, fname)
return f
def default_localname(dldir="/tmp/_wids_cache"):
os.makedirs(dldir, exist_ok=True)
def f(shard):
"""Given a URL, return a local name for the shard."""
cachename = quote(shard, safe="+-")
return os.path.join(dldir, cachename)
return f
class LRUShards:
"""A class that manages a cache of shards. The cache is a LRU cache that
stores the local names of the shards as keys and the downloaded paths as
values. The shards are downloaded to a directory specified by dldir.
The local name of a shard is computed by the localname function, which
takes the shard URL as an argument. If keep is True, the downloaded files
are not deleted when they are no longer needed.
"""
def __init__(self, lru_size, keep=False, localname=default_localname()):
self.localname = localname
# the cache contains the local name as the key and the downloaded path as the value
self.lru = LRUCache(lru_size, release_handler=self.release_handler)
# keep statistics
self.reset_stats()
def reset_stats(self):
self.accesses = 0
self.misses = 0
def __len__(self):
return len(self.lru)
def release_handler(self, key, value):
value.close()
def clear(self):
self.lru.clear()
def get_shard(self, url):
assert isinstance(url, str)
self.accesses += 1
if url not in self.lru:
local = self.localname(url)
with download_and_open(url, local) as stream:
itf = IndexedTarSamples(path=local, stream=stream)
self.lru[url] = itf
self.misses += 1
self.last_missed = True
else:
self.last_missed = False
return self.lru[url]
def interpret_transformations(transformations):
"""Interpret the transformations argument.
This takes care of transformations specified as string shortcuts
and returns a list of callables.
"""
if not isinstance(transformations, list):
transformations = [transformations]
result = []
for transformation in transformations:
if transformation == "PIL":
transformation = partial(default_decoder, format="PIL")
elif transformation == "numpy":
transformation = partial(default_decoder, format="numpy")
else:
assert callable(transformation)
result.append(transformation)
return result
def hash_dataset_name(input_string):
"""Compute a hash of the input string and return the first 16 characters of the hash."""
# Compute SHA256 hash of the input string
hash_object = hashlib.sha256(input_string.encode())
hash_digest = hash_object.digest()
# Encode the hash in base64
base64_encoded_hash = base64.urlsafe_b64encode(hash_digest)
# Return the first 16 characters of the base64-encoded hash
return base64_encoded_hash[:16].decode("ascii")
@lru_cache(maxsize=16)
def lru_json_load(fpath):
with open(fpath) as fp:
return json.load(fp)
class ShardListDataset(Dataset[T]):
"""An indexable dataset based on a list of shards.
The dataset is either given as a list of shards with optional options and name,
or as a URL pointing to a JSON descriptor file.
Datasets can reference other datasets via `source_url`.
Shard references within a dataset are resolve relative to an explicitly
given `base` property, or relative to the URL from which the dataset
descriptor was loaded.
"""
def __init__(
self,
shards,
*,
cache_size=int(1e12),
cache_dir=None,
lru_size=10,
dataset_name=None,
localname=None,
transformations="PIL",
keep=False,
base=None,
options=None,
):
"""Create a ShardListDataset.
Args:
shards: a list of (filename, length) pairs or a URL pointing to a JSON descriptor file
cache_size: the number of shards to keep in the cache
lru_size: the number of shards to keep in the LRU cache
localname: a function that maps URLs to local filenames
Note that there are two caches: an on-disk directory, and an in-memory LRU cache.
"""
if options is None:
options = {}
super().__init__()
# shards is a list of (filename, length) pairs. We'll need to
# keep track of the lengths and cumulative lengths to know how
# to map indices to shards and indices within shards.
if isinstance(shards, (str, io.IOBase)):
if base is None and isinstance(shards, str):
shards = osp.expanduser(shards)
base = urldir(shards)
self.base = base
self.spec = load_dsdesc_and_resolve(shards, options=options, base=base)
self.shards = self.spec.get("shardlist", [])
self.dataset_name = self.spec.get("name") or hash_dataset_name(str(shards))
else:
raise NotImplementedError("Only support taking path/url to JSON descriptor file.")
self.base = None
self.spec = options
self.shards = shards
self.dataset_name = dataset_name or hash_dataset_name(str(shards))
self.lengths = [shard["nsamples"] for shard in self.shards]
self.cum_lengths = np.cumsum(self.lengths)
self.total_length = self.cum_lengths[-1]
if cache_dir is not None:
# when a cache dir is explicitly given, we download files into
# that directory without any changes
self.cache_dir = cache_dir
self.localname = cache_localname(cache_dir)
elif localname is not None:
# when a localname function is given, we use that
self.cache_dir = None
self.localname = localname
else:
import getpass
# when no cache dir or localname are given, use the cache from the environment
self.cache_dir = os.environ.get("WIDS_CACHE", f"~/.cache/_wids_cache")
self.cache_dir = osp.expanduser(self.cache_dir)
self.localname = default_localname(self.cache_dir)
self.data_info = (
f"[WebShardedList] {str(shards)}, base: {self.base,}, name: {self.spec.get('name')}, "
f"nfiles: {str(len(self.shards))}"
)
if True or int(os.environ.get("WIDS_VERBOSE", 0)):
nbytes = sum(shard.get("filesize", 0) for shard in self.shards)
nsamples = sum(shard["nsamples"] for shard in self.shards)
self.data_info += f"nbytes: {str(nbytes)}, samples: {str(nsamples),}, cache: {self.cache_dir} "
# print(
# "[WebShardedList]",
# str(shards),
# "base:",
# self.base,
# "name:",
# self.spec.get("name"),
# "nfiles:",
# len(self.shards),
# "nbytes:",
# nbytes,
# "samples:",
# nsamples,
# "cache:",
# self.cache_dir,
# file=sys.stderr,
# )
self.transformations = interpret_transformations(transformations)
if lru_size > 200:
warnings.warn("LRU size is very large; consider reducing it to avoid running out of file descriptors")
self.cache = LRUShards(lru_size, localname=self.localname, keep=keep)
def add_transform(self, transform):
"""Add a transformation to the dataset."""
self.transformations.append(transform)
return self
def __len__(self):
"""Return the total number of samples in the dataset."""
return self.total_length
def get_stats(self):
"""Return the number of cache accesses and misses."""
return self.cache.accesses, self.cache.misses
def check_cache_misses(self):
"""Check if the cache miss rate is too high."""
accesses, misses = self.get_stats()
if accesses > 100 and misses / accesses > 0.3:
# output a warning only once
self.check_cache_misses = lambda: None
print(f"Warning: ShardListDataset has a cache miss rate of {misses * 100.0 / accesses:.1%}%")
def get_shard(self, index):
"""Get the shard and index within the shard corresponding to the given index."""
# Find the shard corresponding to the given index.
shard_idx = np.searchsorted(self.cum_lengths, index, side="right")
# Figure out which index within the shard corresponds to the
# given index.
if shard_idx == 0:
inner_idx = index
else:
inner_idx = index - self.cum_lengths[shard_idx - 1]
# Get the shard and return the corresponding element.
desc = self.shards[shard_idx]
url = desc["url"]
if url.startswith(("https://", "http://", "gs://", "/", "~")):
# absolute path or url path
url = url
else:
# concat relative path
if self.base is None and "base_path" not in self.spec:
raise FileNotFoundError("passing a relative path in shardlist but no base found.")
base_path = self.spec["base_path"] if "base_path" in self.spec else self.base
url = osp.abspath(osp.join(osp.expanduser(base_path), url))
desc["url"] = url
try:
shard = self.cache.get_shard(url)
except UnicodeDecodeError as e:
print("UnicodeDecodeError:", desc)
raise e
return shard, inner_idx, desc
def __getitem__(self, index):
"""Return the sample corresponding to the given index."""
shard, inner_idx, desc = self.get_shard(index)
sample = shard[inner_idx]
# Check if we're missing the cache too often.
self.check_cache_misses()
sample["__dataset__"] = desc.get("dataset")
sample["__index__"] = index
sample["__shard__"] = desc["url"]
sample["__shardindex__"] = inner_idx
# Apply transformations
for transform in self.transformations:
sample = transform(sample)
return sample
def close(self):
"""Close the dataset."""
self.cache.clear()
class ShardListDatasetMulti(ShardListDataset):
"""An indexable dataset based on a list of shards.
The dataset is either given as a list of shards with optional options and name,
or as a URL pointing to a JSON descriptor file.
Datasets can reference other datasets via `source_url`.
Shard references within a dataset are resolve relative to an explicitly
given `base` property, or relative to the URL from which the dataset
descriptor was loaded.
"""
def __init__(
self,
shards,
*,
cache_size=int(1e12),
cache_dir=None,
lru_size=10,
dataset_name=None,
localname=None,
transformations="PIL",
keep=False,
base=None,
options=None,
sort_data_inseq=False,
num_replicas=None,
):
"""Create a ShardListDataset.
Args:
shards: a list of (filename, length) pairs or a URL pointing to a JSON descriptor file
cache_size: the number of shards to keep in the cache
lru_size: the number of shards to keep in the LRU cache
localname: a function that maps URLs to local filenames
Note that there are two caches: an on-disk directory, and an in-memory LRU cache.
"""
if options is None:
options = {}
# shards is a list of (filename, length) pairs. We'll need to
# keep track of the lengths and cumulative lengths to know how
# to map indices to shards and indices within shards.
shards_lists = shards if isinstance(shards, list) else [shards]
bases = base if isinstance(base, list) else [base] * len(shards_lists)
self.spec = {}
self.shards = []
self.num_per_dir = {}
for base, shards in zip(bases, shards_lists):
if isinstance(shards, (str, io.IOBase)):
if base is None and isinstance(shards, str):
shards = osp.expanduser(shards)
base = urldir(shards)
self.base = base
_spec = load_dsdesc_and_resolve(shards, options=options, base=base)
update_dict_with_extend(self.spec, _spec)
self.num_per_dir[os.path.basename(os.path.dirname(shards))] = sum(
[shard["nsamples"] for shard in _spec.get("shardlist", [])]
)
else:
raise NotImplementedError("Only support taking path/url to JSON descriptor file.")
self.base = None
self.spec = options
self.shards = shards
self.dataset_name = dataset_name or hash_dataset_name(str(shards))
if sort_data_inseq and len(self.spec.get("shardlist", [])) > 0:
num_replicas = num_replicas or dist.get_world_size()
self.spec["shardlist"] = split_and_recombine(self.spec["shardlist"], num_replicas)
self.shards.extend(self.spec.get("shardlist", []))
self.dataset_name = self.spec.get("name") or hash_dataset_name(str(shards))
self.lengths = [shard["nsamples"] for shard in self.shards]
self.cum_lengths = np.cumsum(self.lengths)
self.total_length = self.cum_lengths[-1]
if cache_dir is not None:
# when a cache dir is explicitly given, we download files into
# that directory without any changes
self.cache_dir = cache_dir
self.localname = cache_localname(cache_dir)
elif localname is not None:
# when a localname function is given, we use that
self.cache_dir = None
self.localname = localname
else:
import getpass
# when no cache dir or localname are given, use the cache from the environment
self.cache_dir = os.environ.get("WIDS_CACHE", f"~/.cache/_wids_cache")
self.cache_dir = osp.expanduser(self.cache_dir)
self.localname = default_localname(self.cache_dir)
self.data_info = (
f"[WebShardedList] {str(shards)}, base: {self.base,}, name: {self.spec.get('name')}, "
f"nfiles: {str(len(self.shards))}"
)
if True or int(os.environ.get("WIDS_VERBOSE", 0)):
nbytes = sum(shard.get("filesize", 0) for shard in self.shards)
nsamples = sum(shard["nsamples"] for shard in self.shards)
self.data_info += f"nbytes: {str(nbytes)}, samples: {str(nsamples),}, cache: {self.cache_dir} "
self.transformations = interpret_transformations(transformations)
if lru_size > 200:
warnings.warn("LRU size is very large; consider reducing it to avoid running out of file descriptors")
self.cache = LRUShards(lru_size, localname=self.localname, keep=keep)
def split_and_recombine(lst, n):
from collections import OrderedDict
def extract_prefix(i):
return i["url"].split("/")[-2]
unique_parts = list(OrderedDict((extract_prefix(item), None) for item in lst).keys())
split_dict = {part: [] for part in unique_parts}
for part in unique_parts:
part_list = [item for item in lst if extract_prefix(item) == part]
chunk_size = max(1, len(part_list) // n) # 确保 chunk_size 至少为 1
chunks = [part_list[i * chunk_size : (i + 1) * chunk_size] for i in range(n)]
# 处理最后一个 chunk,如果数量不均匀,将剩余的元素添加到最后一个 chunk
if len(part_list) % n != 0:
chunks[-1].extend(part_list[n * chunk_size :])
split_dict[part] = chunks
recombined_list = []
for i in range(n):
for part in unique_parts:
recombined_list.extend(split_dict[part][i])
return recombined_list
def lengths_to_ranges(lengths):
"""Convert a list of lengths to a list of ranges."""
ranges = []
start = 0
for length in lengths:
ranges.append((start, start + length))
start += length
return ranges
def intersect_range(a, b):
"""Return the intersection of the two half-open integer intervals."""
result = max(a[0], b[0]), min(a[1], b[1])
if result[0] >= result[1]:
return None
return result
def intersect_ranges(rangelist, r):
"""Return the intersection of the half-open integer interval r with the list of half-open integer intervals."""
result = []
for a in rangelist:
x = intersect_range(a, r)
if x is not None:
result.append(x)
return result
def iterate_ranges(ranges, rng, indexshuffle=True, shardshuffle=True):
"""Iterate over the ranges in a random order."""
shard_indexes = list(range(len(ranges)))
if shardshuffle:
rng.shuffle(shard_indexes)
for i in shard_indexes:
lo, hi = ranges[i]
sample_indexes = list(range(lo, hi))
if indexshuffle:
rng.shuffle(sample_indexes)
yield from sample_indexes
class ShardListSampler(Sampler):
"""A sampler that samples consistent with a ShardListDataset.
This sampler is used to sample from a ShardListDataset in a way that
preserves locality.
This returns a permutation of the indexes by shard, then a permutation of
indexes within each shard. This ensures that the data is accessed in a
way that preserves locality.
Note that how this ends up splitting data between multiple workers ends up
on the details of the DataLoader. Generally, it will likely load samples from the
same shard in each worker.
Other more sophisticated shard-aware samplers are possible and will likely
be added.
"""
def __init__(self, dataset, *, lengths=None, seed=0, shufflefirst=False):
if lengths is None:
lengths = list(dataset.lengths)
self.ranges = lengths_to_ranges(lengths)
self.seed = seed
self.shufflefirst = shufflefirst
self.epoch = 0
def __iter__(self):
self.rng = random.Random(self.seed + 1289738273 * self.epoch)
shardshuffle = self.shufflefirst or self.epoch > 0
yield from iterate_ranges(self.ranges, self.rng, shardshuffle=shardshuffle)
self.epoch += 1
ShardedSampler = ShardListSampler
class ChunkedSampler(Sampler):
"""A sampler that samples in chunks and then shuffles the samples within each chunk.
This preserves locality of reference while still shuffling the data.
"""
def __init__(
self,
dataset,
*,
num_samples=None,
chunksize=2000,
seed=0,
shuffle=False,
shufflefirst=False,
):
if isinstance(num_samples, int):
lo, hi = 0, num_samples
elif num_samples is None:
lo, hi = 0, len(dataset)
else:
lo, hi = num_samples
self.ranges = [(i, min(i + chunksize, hi)) for i in range(lo, hi, chunksize)]
self.seed = seed
self.shuffle = shuffle
self.shufflefirst = shufflefirst
self.epoch = 0
def set_epoch(self, epoch):
self.epoch = epoch
def __iter__(self):
self.rng = random.Random(self.seed + 1289738273 * self.epoch)
shardshuffle = self.shufflefirst or self.epoch > 0
yield from iterate_ranges(
self.ranges,
self.rng,
indexshuffle=self.shuffle,
shardshuffle=(self.shuffle and shardshuffle),
)
self.epoch += 1
def __len__(self):
return len(self.ranges)
def DistributedChunkedSampler(
dataset: Dataset,
*,
num_replicas: Optional[int] = None,
num_samples: Optional[int] = None,
rank: Optional[int] = None,
shuffle: bool = True,
shufflefirst: bool = False,
seed: int = 0,
drop_last: bool = None,
chunksize: int = 1000000,
) -> ChunkedSampler:
"""Return a ChunkedSampler for the current worker in distributed training.
Reverts to a simple ChunkedSampler if not running in distributed mode.
Since the split among workers takes place before the chunk shuffle,
workers end up with a fixed set of shards they need to download. The
more workers, the fewer shards are used by each worker.
"""
if drop_last is not None:
warnings.warn("DistributedChunkedSampler does not support drop_last, thus it will be ignored")
if not dist.is_initialized():
warnings.warn("DistributedChunkedSampler is called without distributed initialized; assuming single process")
num_replicas = 1
rank = 0
else:
num_replicas = num_replicas or dist.get_world_size()
rank = rank or dist.get_rank()
assert rank >= 0 and rank < num_replicas
num_samples = num_samples or len(dataset)
worker_chunk = (num_samples + num_replicas - 1) // num_replicas
worker_start = rank * worker_chunk
worker_end = min(worker_start + worker_chunk, num_samples)
return ChunkedSampler(
dataset,
num_samples=(worker_start, worker_end),
chunksize=chunksize,
seed=seed,
shuffle=shuffle,
shufflefirst=shufflefirst,
)
class DistributedRangedSampler(Sampler):
"""A sampler that samples in chunks and then shuffles the samples within each chunk.
This preserves locality of reference while still shuffling the data.
"""
def __init__(
self,
dataset: Dataset,
num_replicas: Optional[int] = None,
num_samples: Optional[int] = None,
rank: Optional[int] = None,
drop_last: bool = None,
):
if drop_last is not None:
warnings.warn("DistributedChunkedSampler does not support drop_last, thus it will be ignored")
if not dist.is_initialized():
warnings.warn(
"DistributedChunkedSampler is called without distributed initialized; assuming single process"
)
num_replicas = 1
rank = 0
else:
num_replicas = num_replicas or dist.get_world_size()
rank = rank or dist.get_rank()
assert rank >= 0 and rank < num_replicas
num_samples = num_samples or len(dataset)
self.worker_chunk = num_samples // num_replicas
self.worker_start = rank * self.worker_chunk
self.worker_end = min((rank + 1) * self.worker_chunk, num_samples)
self.ranges = range(self.worker_start, self.worker_end)
self.epoch = 0
self.step_start = 0
def set_epoch(self, epoch):
self.epoch = epoch
def __len__(self):
return len(self.ranges)
def set_start(self, start):
self.step_start = start
def __iter__(self):
yield from self.ranges[self.step_start :]
self.epoch += 1
class DistributedLocalSampler(DistributedSampler):
def __iter__(self):
if self.shuffle:
# deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type]
else:
indices = list(range(len(self.dataset))) # type: ignore[arg-type]
if not self.drop_last:
# add extra samples to make it evenly divisible
padding_size = self.total_size - len(indices)
if padding_size <= len(indices):
indices += indices[:padding_size]
else:
indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
else:
# remove tail of data to make it evenly divisible.
indices = indices[: self.total_size]
assert len(indices) == self.total_size
# subsample
# indices = indices[self.rank:self.total_size:self.num_replicas]
chunk_size = self.total_size // self.num_replicas
begin_idx = chunk_size * self.rank
stop_idx = chunk_size * (self.rank + 1)
indices = indices[begin_idx:stop_idx]
# print("[SamplerIndices: ]", indices)
assert len(indices) == self.num_samples
return iter(indices)