Spaces:
Runtime error
Runtime error
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import argparse | |
import json | |
import os | |
import re | |
import subprocess | |
import tarfile | |
import warnings | |
from dataclasses import dataclass, field | |
from typing import List, Optional | |
import pyrallis | |
import torch | |
from torchvision.utils import save_image | |
from tqdm import tqdm | |
warnings.filterwarnings("ignore") # ignore warning | |
import cv2 | |
from termcolor import colored | |
from diffusion import DPMS | |
from diffusion.data.datasets.utils import ASPECT_RATIO_512_TEST, ASPECT_RATIO_1024_TEST | |
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode, vae_encode | |
from diffusion.model.utils import prepare_prompt_ar | |
from diffusion.utils.config import SanaConfig, model_init_config | |
from diffusion.utils.logger import get_root_logger | |
from tools.controlnet.utils import get_scribble_map, transform_control_signal | |
from tools.download import find_model | |
def set_env(seed=0, latent_size=256): | |
torch.manual_seed(seed) | |
torch.set_grad_enabled(False) | |
for _ in range(30): | |
torch.randn(1, 4, latent_size, latent_size) | |
def get_dict_chunks(data, bs): | |
keys = [] | |
for k in data: | |
keys.append(k) | |
if len(keys) == bs: | |
yield keys | |
keys = [] | |
if keys: | |
yield keys | |
def create_tar(data_path): | |
tar_path = f"{data_path}.tar" | |
with tarfile.open(tar_path, "w") as tar: | |
tar.add(data_path, arcname=os.path.basename(data_path)) | |
print(f"Created tar file: {tar_path}") | |
return tar_path | |
def delete_directory(exp_name): | |
if os.path.exists(exp_name): | |
subprocess.run(["rm", "-r", exp_name], check=True) | |
print(f"Deleted directory: {exp_name}") | |
def create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type): | |
save_root = os.path.join( | |
img_save_dir, | |
f"{dataset}_epoch{epoch_name}_step{step_name}_scale{args.cfg_scale}" | |
f"_step{sample_steps}_size{args.image_size}_bs{args.bs}_samp{args.sampling_algo}" | |
f"_seed{args.seed}_{str(weight_dtype).split('.')[-1]}", | |
) | |
if args.pag_scale != 1.0: | |
save_root = save_root.replace(f"scale{args.cfg_scale}", f"scale{args.cfg_scale}_pagscale{args.pag_scale}") | |
if flow_shift != 1.0: | |
save_root += f"_flowshift{flow_shift}" | |
if guidance_type != "classifier-free": | |
save_root += f"_{guidance_type}" | |
if args.interval_guidance[0] != 0 and args.interval_guidance[1] != 1: | |
save_root += f"_intervalguidance{args.interval_guidance[0]}{args.interval_guidance[1]}" | |
save_root += f"_imgnums{args.sample_nums}" + args.add_label | |
return save_root | |
def guidance_type_select(default_guidance_type, pag_scale, attn_type): | |
guidance_type = default_guidance_type | |
if not (pag_scale > 1.0 and attn_type == "linear"): | |
logger.info("Setting back to classifier-free") | |
guidance_type = "classifier-free" | |
return guidance_type | |
def get_ar_from_ref_image(ref_image_path): | |
def reduce_ratio(h, w): | |
def gcd(a, b): | |
while b: | |
a, b = b, a % b | |
return a | |
divisor = gcd(h, w) | |
return f"{h // divisor}:{w // divisor}" | |
ref_image = cv2.imread(ref_image_path) | |
h, w = ref_image.shape[:2] | |
return reduce_ratio(h, w) | |
def visualize(config, args, model, items, bs, sample_steps, cfg_scale, pag_scale=1.0): | |
assert bs == 1, "only support batch size 1 currently" | |
if isinstance(items, dict): | |
get_chunks = get_dict_chunks | |
else: | |
from diffusion.data.datasets.utils import get_chunks | |
generator = torch.Generator(device=device).manual_seed(args.seed) | |
tqdm_desc = f"{save_root.split('/')[-1]} Using GPU: {args.gpu_id}: {args.start_index}-{args.end_index}" | |
for chunk in tqdm(list(get_chunks(items, bs)), desc=tqdm_desc, unit="batch", position=args.gpu_id, leave=True): | |
# data prepare | |
prompts, hw, ar = ( | |
[], | |
torch.tensor([[args.image_size, args.image_size]], dtype=torch.float, device=device).repeat(bs, 1), | |
torch.tensor([[1.0]], device=device).repeat(bs, 1), | |
) | |
if "ref_image_path" in chunk[0]: | |
prompt, ref_image_path = chunk[0]["prompt"], chunk[0]["ref_image_path"] | |
args.reference_image_path = ref_image_path | |
ar = get_ar_from_ref_image(args.reference_image_path) | |
else: | |
assert "ref_controlmap_path" in chunk[0], "neither ref_image_path nor ref_controlmap_path is provided" | |
prompt, ref_controlmap_path = chunk[0]["prompt"], chunk[0]["ref_controlmap_path"] | |
args.controlmap_path = ref_controlmap_path | |
ar = get_ar_from_ref_image(args.controlmap_path) | |
prompt += f" --ar {ar}" | |
prompt_clean, _, hw, ar, custom_hw = prepare_prompt_ar(prompt, base_ratios, device=device, show=False) | |
latent_size_h, latent_size_w = ( | |
(int(hw[0, 0] // config.vae.vae_downsample_rate), int(hw[0, 1] // config.vae.vae_downsample_rate)) | |
if args.image_size == 1024 | |
else (latent_size, latent_size) | |
) | |
prompts.append(prompt_clean.strip()) | |
# check exists | |
save_file_name = f"{prompts[0]}.jpg" | |
save_path = os.path.join(save_root, save_file_name) | |
if os.path.exists(save_path): | |
# make sure the noise is totally same | |
torch.randn(bs, config.vae.vae_latent_dim, latent_size_h, latent_size_w, device=device, generator=generator) | |
continue | |
# prepare text feature | |
if not config.text_encoder.chi_prompt: | |
max_length_all = config.text_encoder.model_max_length | |
prompts_all = prompts | |
else: | |
chi_prompt = "\n".join(config.text_encoder.chi_prompt) | |
prompts_all = [chi_prompt + prompt for prompt in prompts] | |
num_chi_prompt_tokens = len(tokenizer.encode(chi_prompt)) | |
max_length_all = ( | |
num_chi_prompt_tokens + config.text_encoder.model_max_length - 2 | |
) # magic number 2: [bos], [_] | |
caption_token = tokenizer( | |
prompts_all, max_length=max_length_all, padding="max_length", truncation=True, return_tensors="pt" | |
).to(device) | |
select_index = [0] + list(range(-config.text_encoder.model_max_length + 1, 0)) | |
caption_embs = text_encoder(caption_token.input_ids, caption_token.attention_mask)[0][:, None][ | |
:, :, select_index | |
] | |
emb_masks = caption_token.attention_mask[:, select_index] | |
null_y = null_caption_embs.repeat(len(prompts), 1, 1)[:, None] | |
# start sampling | |
with torch.no_grad(): | |
n = len(prompts) | |
z = torch.randn( | |
n, config.vae.vae_latent_dim, latent_size_h, latent_size_w, device=device, generator=generator | |
) | |
model_kwargs = dict(data_info={"img_hw": hw, "aspect_ratio": ar}, mask=emb_masks) | |
if args.reference_image_path is not None: | |
input_image = cv2.imread(args.reference_image_path) | |
control_signal = get_scribble_map( | |
input_image=input_image, | |
det="Scribble_HED", | |
detect_resolution=int(hw.min()), | |
thickness=int(args.thickness), | |
) | |
control_signal = transform_control_signal(control_signal, hw).to(device).to(weight_dtype) | |
else: | |
control_signal = transform_control_signal(args.controlmap_path, hw).to(device).to(weight_dtype) | |
control_signal_latent = vae_encode( | |
config.vae.vae_type, vae, control_signal, config.vae.sample_posterior, device | |
) | |
model_kwargs["control_signal"] = control_signal_latent | |
if args.sampling_algo == "flow_dpm-solver": | |
dpm_solver = DPMS( | |
model.forward_with_dpmsolver, | |
condition=caption_embs, | |
uncondition=null_y, | |
guidance_type=guidance_type, | |
cfg_scale=cfg_scale, | |
pag_scale=pag_scale, | |
pag_applied_layers=pag_applied_layers, | |
model_type="flow", | |
model_kwargs=model_kwargs, | |
schedule="FLOW", | |
interval_guidance=args.interval_guidance, | |
) | |
samples = dpm_solver.sample( | |
z, | |
steps=sample_steps, | |
order=2, | |
skip_type="time_uniform_flow", | |
method="multistep", | |
flow_shift=flow_shift, | |
) | |
else: | |
raise ValueError(f"{args.sampling_algo} is not defined") | |
samples = samples.to(weight_dtype) | |
samples = vae_decode(config.vae.vae_type, vae, samples) | |
torch.cuda.empty_cache() | |
return dict(samples=samples, control_signal=control_signal) | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", type=str, help="config") | |
parser.add_argument("--model_path", default=None, type=str, help="Path to the model file (optional)") | |
return parser.parse_known_args()[0] | |
class SanaInference(SanaConfig): | |
config: Optional[str] = "" | |
model_path: Optional[str] = "output/pretrained_models/Sana_1600M_1024px.pth" | |
work_dir: str = "output/inference" | |
version: str = "sigma" | |
txt_file: str = "asset/samples/samples_mini.txt" | |
json_file: Optional[str] = None | |
sample_nums: int = 100_000 | |
bs: int = 1 | |
cfg_scale: float = 4.5 | |
pag_scale: float = 1.0 | |
sampling_algo: str = "flow_dpm-solver" | |
seed: int = 0 | |
dataset: str = "custom_controlnet" | |
step: int = -1 | |
add_label: str = "" | |
tar_and_del: bool = False | |
exist_time_prefix: str = "" | |
gpu_id: int = 0 | |
start_index: int = 0 | |
end_index: int = 30_000 | |
interval_guidance: List[float] = field(default_factory=lambda: [0, 1]) | |
ablation_selections: Optional[List[float]] = None | |
ablation_key: Optional[str] = None | |
debug: bool = False | |
if_save_dirname: bool = False | |
# controlnet | |
reference_image_path: Optional[str] = None | |
controlmap_path: Optional[str] = None | |
thickness: int = 2 | |
blend_alpha: float = 0.0 | |
if __name__ == "__main__": | |
args = get_args() | |
config = args = pyrallis.parse(config_class=SanaInference, config_path=args.config) | |
args.image_size = config.model.image_size | |
if args.json_file is None: | |
assert (args.reference_image_path is None) != ( | |
args.controlmap_path is None | |
), "only one of reference_image_path/controlmap_path can be None" | |
set_env(args.seed, args.image_size // config.vae.vae_downsample_rate) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
logger = get_root_logger() | |
# only support fixed latent size currently | |
latent_size = args.image_size // config.vae.vae_downsample_rate | |
max_sequence_length = config.text_encoder.model_max_length | |
pe_interpolation = config.model.pe_interpolation | |
micro_condition = config.model.micro_condition | |
flow_shift = config.scheduler.flow_shift | |
pag_applied_layers = config.model.pag_applied_layers | |
guidance_type = "classifier-free_PAG" | |
assert ( | |
isinstance(args.interval_guidance, list) | |
and len(args.interval_guidance) == 2 | |
and args.interval_guidance[0] <= args.interval_guidance[1] | |
) | |
args.interval_guidance = [max(0, args.interval_guidance[0]), min(1, args.interval_guidance[1])] | |
sample_steps_dict = {"flow_dpm-solver": 20, "flow_euler": 28} | |
sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo] | |
if config.model.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif config.model.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
elif config.model.mixed_precision == "fp32": | |
weight_dtype = torch.float32 | |
else: | |
raise ValueError(f"weigh precision {config.model.mixed_precision} is not defined") | |
logger.info(f"Inference with {weight_dtype}, default guidance_type: {guidance_type}, flow_shift: {flow_shift}") | |
vae = get_vae(config.vae.vae_type, config.vae.vae_pretrained, device).to(weight_dtype) | |
tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder.text_encoder_name, device=device) | |
null_caption_token = tokenizer( | |
"", max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt" | |
).to(device) | |
null_caption_embs = text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[0] | |
# model setting | |
model_kwargs = model_init_config(config, latent_size=latent_size) | |
model = build_model( | |
config.model.model, use_fp32_attention=config.model.get("fp32_attention", False), **model_kwargs | |
).to(device) | |
logger.info( | |
f"{model.__class__.__name__}:{config.model.model}, Model Parameters: {sum(p.numel() for p in model.parameters()):,}" | |
) | |
logger.info("Generating sample from ckpt: %s" % args.model_path) | |
state_dict = find_model(args.model_path) | |
if "pos_embed" in state_dict["state_dict"]: | |
del state_dict["state_dict"]["pos_embed"] | |
missing, unexpected = model.load_state_dict(state_dict["state_dict"], strict=False) | |
logger.warning(f"Missing keys: {missing}") | |
logger.warning(f"Unexpected keys: {unexpected}") | |
model.eval().to(weight_dtype) | |
base_ratios = eval(f"ASPECT_RATIO_{args.image_size}_TEST") | |
args.sampling_algo = ( | |
args.sampling_algo | |
if ("flow" not in args.model_path or args.sampling_algo == "flow_dpm-solver") | |
else "flow_euler" | |
) | |
if args.work_dir is None: | |
work_dir = ( | |
f"/{os.path.join(*args.model_path.split('/')[:-2])}" | |
if args.model_path.startswith("/") | |
else os.path.join(*args.model_path.split("/")[:-2]) | |
) | |
img_save_dir = os.path.join(str(work_dir), "vis") | |
else: | |
img_save_dir = args.work_dir | |
dict_prompt = args.json_file is not None | |
if dict_prompt: | |
data_dict = json.load(open(args.json_file)) | |
items = data_dict | |
args.sample_nums = len(items) | |
else: | |
raise ValueError("json_file is not provided") | |
match = re.search(r".*epoch_(\d+).*step_(\d+).*", args.model_path) | |
epoch_name, step_name = match.groups() if match else ("unknown", "unknown") | |
os.umask(0o000) | |
os.makedirs(img_save_dir, exist_ok=True) | |
logger.info(f"Sampler {args.sampling_algo}") | |
dataset = "MJHQ-30K" if args.json_file and "MJHQ-30K" in args.json_file else args.dataset | |
guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type) | |
logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}") | |
save_root = create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type) | |
os.makedirs(save_root, exist_ok=True) | |
if args.debug: | |
print(f"debug mode, use fixed items") | |
pass | |
for idx, item in enumerate(items): | |
# args.seed = idx | |
results = visualize( | |
config=config, | |
args=args, | |
model=model, | |
items=[item], | |
bs=args.bs, | |
sample_steps=sample_steps, | |
cfg_scale=args.cfg_scale, | |
pag_scale=args.pag_scale, | |
) | |
os.umask(0o000) | |
sample, control_signal = results["samples"][0], results["control_signal"][0] | |
# 混合mask和image | |
if args.blend_alpha > 0: | |
print(f"blend image and mask with alpha: {args.blend_alpha}") | |
sample = sample * (1 - args.blend_alpha) + control_signal * args.blend_alpha | |
save_file_name = f"{idx}_{item['prompt'][:100]}.jpg" | |
save_path = os.path.join(save_root, save_file_name) | |
save_image(sample, save_path, nrow=1, normalize=True, value_range=(-1, 1)) | |
print( | |
colored(f"Sana inference has finished. Results stored at ", "green"), | |
colored(f"{img_save_dir}", attrs=["bold"]), | |
".", | |
) | |