Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import gradio as gr
|
4 |
+
from langchain.document_loaders import PyPDFLoader, YoutubeLoader
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain_openai import OpenAIEmbeddings
|
7 |
+
from langchain_community.vectorstores import FAISS
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain.chat_models import init_chat_model
|
10 |
+
|
11 |
+
# --- API KEY HANDLING ---
|
12 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") or os.getenv("openai")
|
13 |
+
if not OPENAI_API_KEY:
|
14 |
+
raise ValueError("β OPENAI API Key not found. Please add it to secrets as 'OPENAI_API_KEY' or 'openai'.")
|
15 |
+
|
16 |
+
# --- GRADIO PIPELINE FUNCTION ---
|
17 |
+
def process_inputs(pdf_file, youtube_url, query):
|
18 |
+
docs = []
|
19 |
+
|
20 |
+
# Load PDF
|
21 |
+
try:
|
22 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
23 |
+
tmp.write(pdf_file.read())
|
24 |
+
pdf_path = tmp.name
|
25 |
+
pdf_loader = PyPDFLoader(pdf_path)
|
26 |
+
docs.extend(pdf_loader.load())
|
27 |
+
except Exception as e:
|
28 |
+
return f"β Failed to load PDF: {e}"
|
29 |
+
|
30 |
+
# Load YouTube transcript
|
31 |
+
try:
|
32 |
+
yt_loader = YoutubeLoader.from_youtube_url(youtube_url, add_video_info=False)
|
33 |
+
docs.extend(yt_loader.load())
|
34 |
+
except Exception as e:
|
35 |
+
return f"β Failed to load YouTube video: {e}"
|
36 |
+
|
37 |
+
if not docs:
|
38 |
+
return "β No documents could be loaded from the PDF or YouTube URL."
|
39 |
+
|
40 |
+
# Split
|
41 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
|
42 |
+
splits = splitter.split_documents(docs)
|
43 |
+
|
44 |
+
# Embed + Vectorstore
|
45 |
+
embedding = OpenAIEmbeddings(model="text-embedding-3-large", api_key=OPENAI_API_KEY)
|
46 |
+
db = FAISS.from_documents(splits, embedding)
|
47 |
+
|
48 |
+
# QA Chain
|
49 |
+
llm = init_chat_model("gpt-4o-mini", model_provider="openai", api_key=OPENAI_API_KEY)
|
50 |
+
qa = RetrievalQA.from_chain_type(llm, retriever=db.as_retriever())
|
51 |
+
|
52 |
+
# Query
|
53 |
+
try:
|
54 |
+
result = qa.invoke({"query": query})
|
55 |
+
return result["result"]
|
56 |
+
except Exception as e:
|
57 |
+
return f"β Error during retrieval: {e}"
|
58 |
+
|
59 |
+
# --- GRADIO UI ---
|
60 |
+
with gr.Blocks() as demo:
|
61 |
+
gr.Markdown("## π Ask Questions from PDF + YouTube Transcript")
|
62 |
+
|
63 |
+
with gr.Row():
|
64 |
+
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
65 |
+
yt_input = gr.Textbox(label="YouTube URL", placeholder="https://www.youtube.com/watch?v=...")
|
66 |
+
|
67 |
+
query_input = gr.Textbox(label="Your Question", placeholder="What did the video/PDF say about X?")
|
68 |
+
output = gr.Textbox(label="Answer")
|
69 |
+
|
70 |
+
run_button = gr.Button("Get Answer")
|
71 |
+
run_button.click(fn=process_inputs, inputs=[pdf_input, yt_input, query_input], outputs=output)
|
72 |
+
|
73 |
+
if __name__ == "__main__":
|
74 |
+
demo.launch()
|